Solveeit Logo

Question

Question: Evaluate: $\int x \sin 2x dx$...

Evaluate: xsin2xdx\int x \sin 2x dx

A

xcos2x2+sin2x4+C\frac{x \cos 2x}{2} + \frac{\sin 2x}{4} + C

B

xcos2x2sin2x4+C\frac{x \cos 2x}{2} - \frac{\sin 2x}{4} + C

C

xcos2x2+sin2x4+C-\frac{x \cos 2x}{2} + \frac{\sin 2x}{4} + C

D

xcos2x4+sin2x2+C\frac{x \cos 2x}{4} + \frac{\sin 2x}{2} + C

Answer

xcos2x2+sin2x4+C-\frac{x \cos 2x}{2} + \frac{\sin 2x}{4} + C

Explanation

Solution

The integral xsin2xdx\int x \sin 2x dx is solved using integration by parts, udv=uvvdu\int u \, dv = uv - \int v \, du.

  1. Choose u=xu=x (algebraic) and dv=sin2xdxdv=\sin 2x \, dx (trigonometric) based on the LIATE rule.
  2. This gives du=dxdu=dx and v=sin2xdx=12cos2xv=\int \sin 2x \, dx = -\frac{1}{2}\cos 2x.
  3. Substitute these into the formula: xsin2xdx=x(12cos2x)(12cos2x)dx\int x \sin 2x \, dx = x \left(-\frac{1}{2}\cos 2x\right) - \int \left(-\frac{1}{2}\cos 2x\right) dx =xcos2x2+12cos2xdx= -\frac{x\cos 2x}{2} + \frac{1}{2} \int \cos 2x \, dx
  4. The remaining integral cos2xdx=12sin2x\int \cos 2x \, dx = \frac{1}{2}\sin 2x.
  5. Substitute this back: =xcos2x2+12(12sin2x)+C= -\frac{x\cos 2x}{2} + \frac{1}{2}\left(\frac{1}{2}\sin 2x\right) + C =xcos2x2+sin2x4+C= -\frac{x\cos 2x}{2} + \frac{\sin 2x}{4} + C.