Question
Question: Evaluate: $\int x \sin 2x dx$...
Evaluate: ∫xsin2xdx

A
2xcos2x+4sin2x+C
B
2xcos2x−4sin2x+C
C
−2xcos2x+4sin2x+C
D
4xcos2x+2sin2x+C
Answer
−2xcos2x+4sin2x+C
Explanation
Solution
The integral ∫xsin2xdx is solved using integration by parts, ∫udv=uv−∫vdu.
- Choose u=x (algebraic) and dv=sin2xdx (trigonometric) based on the LIATE rule.
- This gives du=dx and v=∫sin2xdx=−21cos2x.
- Substitute these into the formula: ∫xsin2xdx=x(−21cos2x)−∫(−21cos2x)dx =−2xcos2x+21∫cos2xdx
- The remaining integral ∫cos2xdx=21sin2x.
- Substitute this back: =−2xcos2x+21(21sin2x)+C =−2xcos2x+4sin2x+C.