Solveeit Logo

Question

Question: The function $f(x)=x^3+\lambda x^2+5x+sin2x$ will be an invertible function if $\lambda$ belongs to...

The function f(x)=x3+λx2+5x+sin2xf(x)=x^3+\lambda x^2+5x+sin2x will be an invertible function if λ\lambda belongs to

A

(-\infty,-3)

B

(-3,3)

C

(3,+\infty)

D

(-3,8)

Answer

2

Explanation

Solution

For f(x)f(x) to be invertible, it must be strictly monotonic. Since f(x)f(x) is a polynomial of degree 3 plus sin(2x)\sin(2x), its derivative f(x)f'(x) will determine its monotonicity.

f(x)=3x2+2λx+5+2cos2xf'(x) = 3x^2 + 2\lambda x + 5 + 2\cos2x.

As x±x \to \pm\infty, 3x23x^2 \to \infty, so f(x)f'(x) will eventually be positive. Thus, f(x)f(x) must be strictly increasing, which means f(x)0f'(x) \ge 0 for all xRx \in \mathbb{R}.

Let g(x)=3x2+2λx+5g(x) = 3x^2 + 2\lambda x + 5. We need g(x)+2cos2x0g(x) + 2\cos2x \ge 0.

Since 2cos2x22\cos2x \ge -2, a sufficient condition for f(x)0f'(x) \ge 0 is g(x)2g(x) \ge 2 for all xx.

The minimum value of g(x)g(x) occurs at x=2λ23=λ3x = -\frac{2\lambda}{2 \cdot 3} = -\frac{\lambda}{3}.

Minimum value of g(x)=3(λ3)2+2λ(λ3)+5=λ232λ23+5=5λ23g(x) = 3(-\frac{\lambda}{3})^2 + 2\lambda(-\frac{\lambda}{3}) + 5 = \frac{\lambda^2}{3} - \frac{2\lambda^2}{3} + 5 = 5 - \frac{\lambda^2}{3}.

We require 5λ2325 - \frac{\lambda^2}{3} \ge 2, which simplifies to 3λ233 \ge \frac{\lambda^2}{3}, or λ29\lambda^2 \le 9.

This gives 3λ3-3 \le \lambda \le 3.

For λ[3,3]\lambda \in [-3, 3], we have 3x2+2λx+523x^2 + 2\lambda x + 5 \ge 2.

Therefore, f(x)=(3x2+2λx+5)+2cos2x2+2cos2xf'(x) = (3x^2 + 2\lambda x + 5) + 2\cos2x \ge 2 + 2\cos2x.

Since 2+2cos2x02+2\cos2x \ge 0, we have f(x)0f'(x) \ge 0 for all xRx \in \mathbb{R}.

For f(x)f(x) to be invertible, f(x)f'(x) must not be zero on any interval.

f(x)=0f'(x)=0 only if 3x2+2λx+5=23x^2+2\lambda x+5=2 and 2cos2x=22\cos2x=-2, i.e., 3x2+2λx+3=03x^2+2\lambda x+3=0 and cos2x=1\cos2x=-1.

The quadratic 3x2+2λx+3=03x^2+2\lambda x+3=0 has real roots only if its discriminant D=(2λ)24(3)(3)=4λ2360D=(2\lambda)^2-4(3)(3) = 4\lambda^2-36 \ge 0, meaning λ29\lambda^2 \ge 9.

This condition contradicts λ29\lambda^2 \le 9, unless λ2=9\lambda^2 = 9, i.e., λ=±3\lambda = \pm 3.

If λ=3\lambda=3, 3x2+6x+3=0    3(x+1)2=0    x=13x^2+6x+3=0 \implies 3(x+1)^2=0 \implies x=-1. At x=1x=-1, cos(2(1))=cos(2)1\cos(2(-1))=\cos(2) \ne -1. So f(1)0f'(-1) \ne 0.

If λ=3\lambda=-3, 3x26x+3=0    3(x1)2=0    x=13x^2-6x+3=0 \implies 3(x-1)^2=0 \implies x=1. At x=1x=1, cos(2(1))=cos(2)1\cos(2(1))=\cos(2) \ne -1. So f(1)0f'(1) \ne 0.

Thus, for λ[3,3]\lambda \in [-3, 3], f(x)f'(x) is always strictly greater than zero.

Therefore, f(x)f(x) is strictly increasing for λ[3,3]\lambda \in [-3, 3], making it invertible.

Among the given options, (3,3)(-3,3) is the correct choice.