Solveeit Logo

Question

Question: If $\lim_{x\to 0} \frac{\sin x \sin 2x \sin 3x...\sin nx - x^n}{x \tan((1+x)(1+2x)(1+3x)....(1+2023x...

If limx0sinxsin2xsin3x...sinnxxnxtan((1+x)(1+2x)(1+3x)....(1+2023x))\lim_{x\to 0} \frac{\sin x \sin 2x \sin 3x...\sin nx - x^n}{x \tan((1+x)(1+2x)(1+3x)....(1+2023x))} exists and is non-zero, then 'n' equals

A

2022

B

2023

C

2024

D

no such value of n exists

Answer

no such value of n exists

Explanation

Solution

Let the limit be LL. The numerator is N(x)=k=1nsinkxxnN(x) = \prod_{k=1}^{n} \sin kx - x^n and the denominator is D(x)=xtan(k=12023(1+kx))D(x) = x \tan(\prod_{k=1}^{2023} (1+kx)).

For the denominator, as x0x \to 0, k=12023(1+kx)1\prod_{k=1}^{2023} (1+kx) \to 1. Thus, tan(k=12023(1+kx))tan(1)\tan(\prod_{k=1}^{2023} (1+kx)) \to \tan(1). The denominator behaves as D(x)xtan(1)D(x) \sim x \tan(1) for x0x \to 0. The lowest power of xx is x1x^1.

For the numerator, using the Taylor expansion siny=yy36+O(y5)\sin y = y - \frac{y^3}{6} + O(y^5): k=1nsinkx=k=1n(kx(kx)36+O(x5))\prod_{k=1}^{n} \sin kx = \prod_{k=1}^{n} (kx - \frac{(kx)^3}{6} + O(x^5)) =(xx36+...)(2x(2x)36+...)...(nx(nx)36+...)= (x - \frac{x^3}{6} + ...)(2x - \frac{(2x)^3}{6} + ...)...(nx - \frac{(nx)^3}{6} + ...) The term with the lowest power of xx in the product is (x)(2x)...(nx)=n!xn(x)(2x)...(nx) = n! x^n. So, k=1nsinkx=n!xn+O(xn+2)\prod_{k=1}^{n} \sin kx = n! x^n + O(x^{n+2}).

The numerator is N(x)=n!xn+O(xn+2)xn=(n!1)xn+O(xn+2)N(x) = n! x^n + O(x^{n+2}) - x^n = (n!-1)x^n + O(x^{n+2}).

For the limit LL to exist and be non-zero, the lowest power of xx in the numerator must match the lowest power of xx in the denominator, which is x1x^1.

Case 1: n>1n > 1. The lowest power of xx in the numerator is xnx^n. For this to match the denominator's x1x^1, we need n=1n=1. This contradicts the assumption n>1n>1.

Case 2: n=1n = 1. The numerator is N(x)=sinxxN(x) = \sin x - x. Using Taylor expansion, sinxx=(xx36+O(x5))x=x36+O(x5)\sin x - x = (x - \frac{x^3}{6} + O(x^5)) - x = -\frac{x^3}{6} + O(x^5). The lowest power of xx in the numerator is x3x^3. The denominator's lowest power is x1x^1. The limit becomes L=limx0x3/6xtan(1)=limx0x26tan(1)=0L = \lim_{x\to 0} \frac{-x^3/6}{x \tan(1)} = \lim_{x\to 0} \frac{-x^2}{6 \tan(1)} = 0. This limit is zero, not non-zero.

Since neither n=1n=1 nor n>1n>1 yields a non-zero limit, there is no such value of nn that satisfies the given condition.