Solveeit Logo

Question

Question: $6.023 \times 10^{22}$ molecules are present in 10 g of a substance X. The molarity of a solution co...

6.023×10226.023 \times 10^{22} molecules are present in 10 g of a substance X. The molarity of a solution containing 5 g of substance X in 2 L solution is ______×103\times 10^{-3} M

Answer

25

Explanation

Solution

Step 1: Calculate the number of moles of substance X from the given number of molecules.

We know that 1 mole of any substance contains Avogadro's number (NA=6.023×1023N_A = 6.023 \times 10^{23}) of molecules.

Given: 6.023×10226.023 \times 10^{22} molecules of substance X are present in 10 g.

Number of moles of X = (Given number of molecules) / (Avogadro's number)

Number of moles of X = 6.023×10226.023×1023=101=0.1\frac{6.023 \times 10^{22}}{6.023 \times 10^{23}} = 10^{-1} = 0.1 mol

Step 2: Calculate the molar mass of substance X.

We found that 0.1 moles of substance X weigh 10 g.

Molar mass (M) = Mass / Number of moles

M = 10 g0.1 mol=100 g/mol\frac{10 \text{ g}}{0.1 \text{ mol}} = 100 \text{ g/mol}

Step 3: Calculate the number of moles of substance X present in 5 g.

The solution contains 5 g of substance X.

Number of moles of X = Mass of X / Molar mass of X

Number of moles of X = 5 g100 g/mol=0.05 mol\frac{5 \text{ g}}{100 \text{ g/mol}} = 0.05 \text{ mol}

Step 4: Calculate the molarity of the solution.

Molarity (M) = Number of moles of solute / Volume of solution (in Liters)

Given volume of solution = 2 L

Molarity = 0.05 mol2 L=0.025 M\frac{0.05 \text{ mol}}{2 \text{ L}} = 0.025 \text{ M}

Step 5: Express the molarity in the required format (×103\times 10^{-3} M).

0.025 M=0.025×103×103 M=25×103 M0.025 \text{ M} = 0.025 \times 10^3 \times 10^{-3} \text{ M} = 25 \times 10^{-3} \text{ M}

The molarity of the solution is 25×10325 \times 10^{-3} M.