Solveeit Logo

Question

Question: The value of $\lambda$ such that the system $x - 2y + z = -4, 2x - y + 2z = 2$ and $x + y + \lambda ...

The value of λ\lambda such that the system x2y+z=4,2xy+2z=2x - 2y + z = -4, 2x - y + 2z = 2 and x+y+λz=4x + y + \lambda z = 4 has no solution is

A

3

B

1

C

0

D

-3

Answer

1

Explanation

Solution

We are given the system

{x2y+z=4,2xy+2z=2,x+y+λz=4.\begin{cases} x - 2y + z = -4, \\ 2x - y + 2z = 2, \\ x + y + \lambda z = 4. \end{cases}

The system has no solution when the coefficient matrix is singular and the system is inconsistent. The coefficient matrix is

A=(12121211λ).A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & 2 \\ 1 & 1 & \lambda \end{pmatrix}.

Its determinant is

det(A)=1121λ(2)221λ+12111.\det(A) = 1\begin{vmatrix}-1 & 2 \\ 1 & \lambda\end{vmatrix} - (-2)\begin{vmatrix}2 & 2 \\ 1 & \lambda\end{vmatrix} + 1\begin{vmatrix}2 & -1 \\ 1 & 1\end{vmatrix}.

Calculating the minors:

det(121λ)=1λ21=λ2,det(221λ)=2λ21=2λ2,det(2111)=21(1)1=2+1=3.\begin{aligned} \det\begin{pmatrix}-1 & 2 \\ 1 & \lambda\end{pmatrix} &= -1\cdot\lambda - 2\cdot1 = -\lambda - 2, \\ \det\begin{pmatrix}2 & 2 \\ 1 & \lambda\end{pmatrix} &= 2\lambda - 2\cdot1 = 2\lambda - 2, \\ \det\begin{pmatrix}2 & -1 \\ 1 & 1\end{pmatrix} &= 2\cdot1 - (-1)\cdot1 = 2 + 1 = 3. \end{aligned}

Thus,

det(A)=(λ2)+2(2λ2)+3=λ2+4λ4+3=3λ3.\det(A) = (-\lambda-2) + 2(2\lambda-2) + 3 = -\lambda - 2 + 4\lambda - 4 + 3 = 3\lambda - 3.

Setting det(A)=0\det(A) = 0 gives:

3λ3=0λ=1.3\lambda - 3 = 0 \quad\Longrightarrow\quad \lambda = 1.

Now, substituting λ=1\lambda=1 into the system yields:

{x2y+z=4,2xy+2z=2,x+y+z=4.\begin{cases} x - 2y + z = -4, \\ 2x - y + 2z = 2, \\ x + y + z = 4. \end{cases}

Eliminating between equations shows an inconsistency (for instance, subtracting the first from the third gives 3y=83y=8 so y=83y=\frac{8}{3} and then the second equation fails to be satisfied). Hence, the value λ=1\lambda = 1 indeed makes the system inconsistent.