Question
Question: The value of $\lambda$ such that the system $x - 2y + z = -4, 2x - y + 2z = 2$ and $x + y + \lambda ...
The value of λ such that the system x−2y+z=−4,2x−y+2z=2 and x+y+λz=4 has no solution is

A
3
B
1
C
0
D
-3
Answer
1
Explanation
Solution
Given the system
x−2y+z2x−y+2zx+y+λz=−4(1),=2(2),=4(3).- Find the determinant of the coefficient matrix:
Expanding the determinant:
det(A)=1−112λ−(−2)212λ+121−11=1[(−1)λ−(2)(1)]+2[2λ−2⋅1]+1[2⋅1−(−1)⋅1]=(−λ−2)+2(2λ−2)+(2+1)=−λ−2+4λ−4+3=3λ−3=3(λ−1).For the system to possibly be inconsistent (i.e. not have a unique solution), we require det(A)=0, hence
3(λ−1)=0⟹λ=1.- Check for consistency when λ=1:
Substitute λ=1 into the equations:
(1)(2)(3)x−2y+z=−4,2x−y+2z=2,x+y+z=4.-
From (1): x=−4+2y−z.
-
Substitute x into (2):
2(−4+2y−z)−y+2z=2⟹−8+4y−2z−y+2z=2,which simplifies to
3y−8=2⟹3y=10⟹y=310. -
Then, x=−4+320−z=38−z.
-
Substitute x and y into (3):
(38−z)+310+z=4⟹318=6=4.
This contradiction shows that the system is inconsistent when λ=1.