Solveeit Logo

Question

Question: The value of $\lambda$ such that the system $x - 2y + z = -4, 2x - y + 2z = 2$ and $x + y + \lambda ...

The value of λ\lambda such that the system x2y+z=4,2xy+2z=2x - 2y + z = -4, 2x - y + 2z = 2 and x+y+λz=4x + y + \lambda z = 4 has no solution is

A

3

B

1

C

0

D

-3

Answer

1

Explanation

Solution

Given the system

x2y+z=4(1),2xy+2z=2(2),x+y+λz=4(3).\begin{aligned} x - 2y + z &= -4 \quad (1),\\[5mm] 2x - y + 2z &= 2 \quad (2),\\[5mm] x + y + \lambda z &= 4 \quad (3). \end{aligned}
  1. Find the determinant of the coefficient matrix:
A=12121211λ.A = \begin{vmatrix} 1 & -2 & 1\\[4mm] 2 & -1 & 2\\[4mm] 1 & 1 & \lambda \end{vmatrix}.

Expanding the determinant:

det(A)=1121λ(2)221λ+12111=1[(1)λ(2)(1)]+2[2λ21]+1[21(1)1]=(λ2)+2(2λ2)+(2+1)=λ2+4λ4+3=3λ3=3(λ1).\begin{aligned} \det(A) &= 1\begin{vmatrix} -1 & 2 \\[3mm] 1 & \lambda \end{vmatrix} - (-2) \begin{vmatrix} 2 & 2 \\[3mm] 1 & \lambda \end{vmatrix} + 1\begin{vmatrix} 2 & -1 \\[3mm] 1 & 1 \end{vmatrix}\\[3mm] &= 1\bigl[(-1)\lambda - (2)(1)\bigr] + 2\bigl[2\lambda - 2\cdot1\bigr] + 1\bigl[2\cdot1 - (-1)\cdot1\bigr]\\[3mm] &= (-\lambda - 2) + 2(2\lambda-2) + (2+1)\\[3mm] &= -\lambda - 2 + 4\lambda - 4 + 3\\[3mm] &= 3\lambda - 3 = 3(\lambda-1). \end{aligned}

For the system to possibly be inconsistent (i.e. not have a unique solution), we require det(A)=0\det(A)=0, hence

3(λ1)=0λ=1.3(\lambda-1)=0 \quad \Longrightarrow \quad \lambda=1.
  1. Check for consistency when λ=1\lambda=1:

Substitute λ=1\lambda=1 into the equations:

(1)x2y+z=4,(2)2xy+2z=2,(3)x+y+z=4.\begin{aligned} (1)&\quad x - 2y + z = -4,\\[3mm] (2)&\quad 2x - y + 2z = 2,\\[3mm] (3)&\quad x + y + z = 4. \end{aligned}
  • From (1): x=4+2yzx = -4 + 2y - z.

  • Substitute xx into (2):

    2(4+2yz)y+2z=28+4y2zy+2z=2,2(-4+2y-z) - y + 2z = 2 \quad\Longrightarrow\quad -8 + 4y - 2z - y + 2z = 2,

    which simplifies to

    3y8=23y=10y=103.3y - 8 = 2 \quad\Longrightarrow\quad 3y=10 \quad\Longrightarrow\quad y=\frac{10}{3}.
  • Then, x=4+203z=83zx = -4 + \frac{20}{3} - z = \frac{8}{3} - z.

  • Substitute xx and yy into (3):

    (83z)+103+z=4183=6=4.\left(\frac{8}{3}-z\right)+\frac{10}{3}+z = 4 \quad\Longrightarrow\quad \frac{18}{3}=6=4.

This contradiction shows that the system is inconsistent when λ=1\lambda=1.