Solveeit Logo

Question

Question: The value of $\lambda$ such that the system $x - 2y + z = -4, 2x - y + 2z = 2$ and $x + y + \lambda ...

The value of λ\lambda such that the system x2y+z=4,2xy+2z=2x - 2y + z = -4, 2x - y + 2z = 2 and x+y+λz=4x + y + \lambda z = 4 has no solution is

A

3

B

1

C

0

D

-3

Answer

1

Explanation

Solution

For the system

{x2y+z=4,2xy+2z=2,x+y+λz=4,\begin{cases} x - 2y + z = -4,\\[6pt] 2x - y + 2z = 2,\\[6pt] x + y + \lambda z = 4, \end{cases}

the coefficient matrix is

A=(12121211λ).A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & 2 \\ 1 & 1 & \lambda \end{pmatrix}.
  1. Compute the determinant:

    detA=1121λ(2)221λ+12111.\det A = 1\begin{vmatrix} -1 & 2 \\ 1 & \lambda \end{vmatrix} - (-2)\begin{vmatrix} 2 & 2 \\ 1 & \lambda \end{vmatrix} + 1\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix}. =1(λ2)+2(2λ2)+1(2+1)= 1(-\lambda - 2) + 2(2\lambda - 2) + 1(2+1) =(λ2)+(4λ4)+3= (-\lambda - 2) + (4\lambda - 4) + 3 =3λ3.= 3\lambda - 3.

    Setting detA=0\det A = 0 gives:

    3λ3=0λ=1.3\lambda - 3 = 0\quad\Rightarrow\quad \lambda = 1.
  2. Check inconsistency:

    With λ=1\lambda = 1, the third equation should be a linear combination of the first two for consistency. Testing the combination shows that while the coefficients match, the corresponding constant term does not (combining the first two gives a constant 6 instead of 4). Hence, the system is inconsistent (has no solution).