Solveeit Logo

Question

Question: The value of $\lambda$ such that the system $x - 2y + z = -4, 2x - y + 2z = 2$ and $x + y + \lambda ...

The value of λ\lambda such that the system x2y+z=4,2xy+2z=2x - 2y + z = -4, 2x - y + 2z = 2 and x+y+λz=4x + y + \lambda z = 4 has no solution is

A

3

B

1

C

0

D

-3

Answer

1

Explanation

Solution

We are given the system

{x2y+z=4(1)2xy+2z=2(2)x+y+λz=4(3)\begin{cases} x-2y+z=-4\quad(1)\\[6mm] 2x-y+2z=2\quad(2)\\[6mm] x+y+\lambda z=4\quad(3) \end{cases}

Step 1. Solve (1) for xx:

x=4+2yz.x=-4+2y-z.

Step 2. Substitute xx in (2):

2(4+2yz)y+2z=28+4y2zy+2z=2,2(-4+2y-z)-y+2z=2 \quad\Rightarrow\quad -8+4y-2z-y+2z=2,

which simplifies to

3y8=2y=103.3y-8=2\quad\Rightarrow\quad y=\frac{10}{3}.

Step 3. Now substitute x=4+2yzx=-4+2y-z and y=103y=\frac{10}{3} in (3):

(4+2yz)+y+λz=4.(-4+2y-z)+y+\lambda z=4.

Substitute the value of yy:

4+2(103)z+103+λz=4.-4+2\left(\frac{10}{3}\right)-z+\frac{10}{3}+\lambda z=4.

Combine constant and zz terms:

4+203+103+(λ1)z=4.-4+\frac{20}{3}+\frac{10}{3}+(\lambda-1)z=4.

Since 20+103=303=10\frac{20+10}{3}=\frac{30}{3}=10, the equation becomes:

4+10+(λ1)z=46+(λ1)z=4.-4+10+(\lambda-1)z=4\quad\Rightarrow\quad 6+(\lambda-1)z=4.

Thus,

(λ1)z=2.(\lambda-1)z= -2.

Step 4. For a solution to exist when λ1\lambda\neq 1, we can solve for zz. But when λ=1\lambda = 1, the equation becomes:

0z=2,0\cdot z=-2,

which is inconsistent. Hence, the system has no solution when

λ=1.\lambda=1.