Solveeit Logo

Question

Question: The value of $\lambda$ such that the system $x - 2y + z = -4, 2x - y + 2z = 2$ and $x + y + \lambda ...

The value of λ\lambda such that the system x2y+z=4,2xy+2z=2x - 2y + z = -4, 2x - y + 2z = 2 and x+y+λz=4x + y + \lambda z = 4 has no solution is

A

3

B

1

C

0

D

-3

Answer

1

Explanation

Solution

We are given the system:

x2y+z=4x - 2y + z = -4
2xy+2z=22x - y + 2z = 2
x+y+λz=4x + y + \lambda z = 4

Step 1: Solve (1) for xx:

x=4+2yzx = -4 + 2y - z.

Step 2: Substitute xx in (2):

2(4+2yz)y+2z=28+4y2zy+2z=22(-4+2y-z) - y + 2z = 2 \Rightarrow -8 + 4y -2z - y +2z = 2.

Simplify:

3y=10y=1033y = 10 \Rightarrow y = \frac{10}{3}.

Step 3: Substitute xx and yy into (3):

(4+2yz)+y+λz=44+3y+(λ1)z=4(-4+2y-z) + y + \lambda z = 4 \Rightarrow -4 +3y + (\lambda -1)z =4.

Plug y=103y=\frac{10}{3}:

4+10+(λ1)z=46+(λ1)z=4-4 + 10 + (\lambda-1)z = 4 \Rightarrow 6 + (\lambda-1)z = 4.

Thus:

(λ1)z=2(\lambda-1)z = -2.

For the system to have no solution, the coefficient of zz must vanish while the constant term remains nonzero, i.e.,

λ1=0\lambda - 1 = 0 and 20-2 \neq 0.

This gives:

λ=1\lambda = 1.