Solveeit Logo

Question

Question: \(60{\text{ grams C}}{{\text{H}}_3}{\text{COOH}}\) and \(46{\text{ grams }}{{\text{C}}_2}{{\text{H}}...

60 grams CH3COOH60{\text{ grams C}}{{\text{H}}_3}{\text{COOH}} and 46 grams C2H5OH46{\text{ grams }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} react in 5 L5{\text{ L}} flask to form 44 grams CH3COOC2H544{\text{ grams C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} at equilibrium on taking 120 grams CH3COOH120{\text{ grams C}}{{\text{H}}_3}{\text{COOH}} and 46 grams C2H5OH46{\text{ grams }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}, CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} formed at equilibrium is
A) 44 g44{\text{ g}}
B) 20.33 g20.33{\text{ g}}
C) 22 g22{\text{ g}}
D) 58.66 g58.66{\text{ g}}

Explanation

Solution

First calculate the equilibrium constant using the amount of the reactants and products given. Then in the second case calculate the concentration of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} formed using the value of equilibrium constant.

Formulae Used:
Number of moles=MassMolar mass{\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}
Molarity=Number of molesVolume of solution{\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}

Complete step by step answer: We know that the molar mass of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} is 60 g mol160{\text{ g mo}}{{\text{l}}^{ - 1}}, the molar mass of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} is 46 g mol146{\text{ g mo}}{{\text{l}}^{ - 1}} and the molar mass of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} is 88 g mol188{\text{ g mo}}{{\text{l}}^{ - 1}}.
Calculate the initial number of moles of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} using the equation as follows:
Number of moles=MassMolar mass{\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}
Number of moles of CH3COOH=60 g60 g mol1=1 mol{\text{Number of moles of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{60 g}}}}{{{\text{60 g mo}}{{\text{l}}^{ - 1}}}} = 1{\text{ mol}}
Calculate the initial molar concentration of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} using the equation as follows:
Molarity=Number of molesVolume of solution{\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}
Molarity of CH3COOH=1 mol5 L=0.2 mol L1{\text{Molarity of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{1 mol}}}}{{{\text{5 L}}}} = 0.2{\text{ mol }}{{\text{L}}^{ - 1}}
Calculate the initial number of moles of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} using the equation as follows:
Number of moles=MassMolar mass{\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}
Number of moles of C2H5OH=46 g46 g mol1=1 mol{\text{Number of moles of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{46 g}}}}{{{\text{46 g mo}}{{\text{l}}^{ - 1}}}} = 1{\text{ mol}}
Calculate the initial molar concentration of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} using the equation as follows:
Molarity=Number of molesVolume of solution{\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}
Molarity of C2H5OH=1 mol5 L=0.2 mol L1{\text{Molarity of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{1 mol}}}}{{{\text{5 L}}}} = 0.2{\text{ mol }}{{\text{L}}^{ - 1}}
Calculate the number of moles of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} at equilibrium using the equation as follows:
Number of moles=MassMolar mass{\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}
Number of moles of CH3COOC2H5=44 g88 g mol1=0.5 mol{\text{Number of moles of C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} = \dfrac{{{\text{44 g}}}}{{{\text{88 g mo}}{{\text{l}}^{ - 1}}}} = 0.5{\text{ mol}}
Calculate the molar concentration of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} at equilibrium using the equation as follows:
Molarity=Number of molesVolume of solution{\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}
Molarity of CH3COOC2H5=0.5 mol5 L=0.1 mol L1{\text{Molarity of C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} = \dfrac{{{\text{0}}{\text{.5 mol}}}}{{{\text{5 L}}}} = 0.1{\text{ mol }}{{\text{L}}^{ - 1}}
The reaction of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} with C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} to produce CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} is as follows:
CH3COOH+C2H5OHCH3COOC2H5+H2O{\text{C}}{{\text{H}}_3}{\text{COOH}} + {{\text{C}}_2}{{\text{H}}_5}{\text{OH}} \to {\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} + {{\text{H}}_2}{\text{O}}
Initially there are 0.2 mol L10.2{\text{ mol }}{{\text{L}}^{ - 1}} of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} and 0.2 mol L10.2{\text{ mol }}{{\text{L}}^{ - 1}} of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}.
From the reaction, we can see that one mole of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} reacts with one mole of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} to produce one mole of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}.
At equilibrium 0.1 mol L10.1{\text{ mol }}{{\text{L}}^{ - 1}} of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} are produced. Thus, at equilibrium to produce 0.1 mol L10.1{\text{ mol }}{{\text{L}}^{ - 1}} of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}we require (0.20.1) mol L1=0.1 mol L1\left( {0.2 - 0.1} \right){\text{ mol }}{{\text{L}}^{ - 1}} = 0.1{\text{ mol }}{{\text{L}}^{ - 1}} of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} and (0.20.1) mol L1=0.1 mol L1\left( {0.2 - 0.1} \right){\text{ mol }}{{\text{L}}^{ - 1}} = 0.1{\text{ mol }}{{\text{L}}^{ - 1}} of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}.
Thus, the equation for equilibrium constant is as follows:
K=[CH3COOC2H5][H2O][CH3COOH][C2H5OH]K = \dfrac{{{\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{][}}{{\text{H}}_2}{\text{O]}}}}{{{\text{[C}}{{\text{H}}_3}{\text{COOH][}}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}]}}
K=0.1×0.10.1×0.1K = \dfrac{{0.1 \times 0.1}}{{0.1 \times 0.1}}
K=1K = 1
In the second case,
Calculate the initial number of moles of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} using the equation as follows:
Number of moles=MassMolar mass{\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}
Number of moles of CH3COOH=120 g60 g mol1=2 mol{\text{Number of moles of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{120 g}}}}{{{\text{60 g mo}}{{\text{l}}^{ - 1}}}} = 2{\text{ mol}}
Calculate the initial molar concentration of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} using the equation as follows:
Molarity=Number of molesVolume of solution{\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}
Molarity of CH3COOH=2 mol5 L=0.4 mol L1{\text{Molarity of C}}{{\text{H}}_3}{\text{COOH}} = \dfrac{{{\text{2 mol}}}}{{{\text{5 L}}}} = 0.4{\text{ mol }}{{\text{L}}^{ - 1}}
Calculate the initial number of moles of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} using the equation as follows:
Number of moles=MassMolar mass{\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}
Number of moles of C2H5OH=46 g46 g mol1=1 mol{\text{Number of moles of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{46 g}}}}{{{\text{46 g mo}}{{\text{l}}^{ - 1}}}} = 1{\text{ mol}}
Calculate the initial molar concentration of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} using the equation as follows:
Molarity=Number of molesVolume of solution{\text{Molarity}} = \dfrac{{{\text{Number of moles}}}}{{{\text{Volume of solution}}}}
Molarity of C2H5OH=1 mol5 L=0.2 mol L1{\text{Molarity of }}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} = \dfrac{{{\text{1 mol}}}}{{{\text{5 L}}}} = 0.2{\text{ mol }}{{\text{L}}^{ - 1}}
Initially there are 0.4 mol L10.4{\text{ mol }}{{\text{L}}^{ - 1}} of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} and 0.2 mol L10.2{\text{ mol }}{{\text{L}}^{ - 1}} of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}.
From the reaction, we can see that one mole of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} reacts with one mole of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}} to produce one mole of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}.
Consider that at equilibrium x mol L1x{\text{ mol }}{{\text{L}}^{ - 1}} of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} are produced. Thus, at equilibrium to produce x mol L1x{\text{ mol }}{{\text{L}}^{ - 1}} of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}we require (0.4x) mol L1\left( {0.4 - x} \right){\text{ mol }}{{\text{L}}^{ - 1}} of CH3COOH{\text{C}}{{\text{H}}_3}{\text{COOH}} and (0.2x) mol L1\left( {0.2 - x} \right){\text{ mol }}{{\text{L}}^{ - 1}} of C2H5OH{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}.
Thus, the equation for equilibrium constant is as follows:
K=[CH3COOC2H5][H2O][CH3COOH][C2H5OH]K = \dfrac{{{\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{][}}{{\text{H}}_2}{\text{O]}}}}{{{\text{[C}}{{\text{H}}_3}{\text{COOH][}}{{\text{C}}_2}{{\text{H}}_5}{\text{OH}}]}}
K=x2(0.4x)(0.2x)=1K = \dfrac{{{x^2}}}{{\left( {0.4 - x} \right)\left( {0.2 - x} \right)}} = 1 …… [CH3COOC2H5]=[H2O]{\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{]}} = {\text{[}}{{\text{H}}_2}{\text{O]}}
x2=(0.4x)(0.2x){x^2} = \left( {0.4 - x} \right)\left( {0.2 - x} \right)
x2=0.08+x20.6x{x^2} = 0.08 + {x^2} - 0.6x
0.6x=0.080.6x = 0.08
x=0.080.6x = \dfrac{{0.08}}{{0.6}}
Thus, the number of moles of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} =0.080.6×5=0.6666 mol = \dfrac{{0.08}}{{0.6}} \times 5 = 0.6666{\text{ mol}}
Thus, mass of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} =0.6666×88=58.66 g = 0.6666 \times 88 = 58.66{\text{ g}}
Thus, the mass of CH3COOC2H5{\text{C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5} formed at equilibrium is 58.66 g58.66{\text{ g}}.

Thus, the correct option is (D) 58.66 g58.66{\text{ g}}.

Note: Remember that the equilibrium constant expresses the relationship between the amounts of products and the amounts of reactants that are present at equilibrium in a reversible reaction. In simple words, equilibrium constant is the ratio of the concentration of products to the concentration of reactants.