Question
Question: When 36.8g N₂O₄ (g) is introduced into a 1.0-litre flask at 27°C. The following equilibrium reaction...
When 36.8g N₂O₄ (g) is introduced into a 1.0-litre flask at 27°C. The following equilibrium reaction occurs :
N₂O₄ (g) ⇌ 2NO₂ (g); Kₚ = 0.164 atm.
(a) Calculate K of the equilibrium reaction. (in 10⁻³ M)
(b) What are the number of millimoles of N₂O₄ at equilibrium?
(c) What is the total pressure of gases (in atm) in the flask at equilibrium?
(d) What is the percent dissociation of N₂O₄?

Answer
(a) Kc=6.66×10−3 M (or 6.66 in 10⁻³ M) (b) 375 mmol (c) 10.5 atm (d) 6.25%
Explanation
Solution
-
Calculate Initial Moles and Concentration of N₂O₄:
- Molar mass of N₂O₄ = 92.02 g/mol.
- Initial moles of N₂O₄ = 36.8 g/92.02 g/mol≈0.400 mol.
- Initial concentration of N₂O₄, [N2O4]0=0.400 M.
-
Calculate Kc (Part a):
- Δng=1. T=27∘C=300 K. R=0.0821 L atm/mol K.
- Kc=(RT)ΔngKp=(0.0821×300)10.164≈0.00666 M=6.66×10−3 M.
-
Set up ICE Table and Calculate Equilibrium Concentrations:
- Reaction: N₂O₄ (g) ⇌ 2NO₂ (g)
- Initial (M): 0.400 0
- Change (M): -x +2x
- Equilibrium (M): 0.400 - x 2x
- Kc=[N2O4][NO2]2⟹0.00666=0.400−x(2x)2.
- 4x2+0.00666x−0.002664=0.
- Solving for x≈0.0250 M.
-
Calculate Millimoles of N₂O₄ at Equilibrium (Part b):
- Equilibrium concentration of N₂O₄ = 0.400 M−0.0250 M=0.375 M.
- Moles of N₂O₄ = 0.375 mol/L×1.0 L=0.375 mol.
- Millimoles of N₂O₄ = 0.375 mol×1000 mmol/mol=375 mmol.
-
Calculate Percent Dissociation of N₂O₄ (Part d):
- Degree of dissociation, α=[N2O4]0x=0.400 M0.0250 M=0.0625.
- Percent dissociation = 0.0625×100%=6.25%.
-
Calculate Total Pressure at Equilibrium (Part c):
- Equilibrium concentration of NO₂ = 2x=2×0.0250 M=0.0500 M.
- Moles of NO₂ = 0.0500 mol.
- Total moles = Moles of N₂O₄ + Moles of NO₂ = 0.375 mol+0.0500 mol=0.425 mol.
- Ptotal=VntotalRT=1.0 L0.425 mol×0.0821 L atm/mol K×300 K≈10.5 atm.
