Solveeit Logo

Question

Question: When 36.8g N₂O₄ (g) is introduced into a 1.0-litre flask at 27°C. The following equilibrium reaction...

When 36.8g N₂O₄ (g) is introduced into a 1.0-litre flask at 27°C. The following equilibrium reaction occurs :

N₂O₄ (g) ⇌ 2NO₂ (g); Kₚ = 0.164 atm.

(a) Calculate K of the equilibrium reaction. (in 10⁻³ M)

(b) What are the number of millimoles of N₂O₄ at equilibrium?

(c) What is the total pressure of gases (in atm) in the flask at equilibrium?

(d) What is the percent dissociation of N₂O₄?

Answer

(a) Kc=6.66×103K_c = 6.66 \times 10^{-3} M (or 6.66 in 10⁻³ M) (b) 375 mmol (c) 10.5 atm (d) 6.25%

Explanation

Solution

  1. Calculate Initial Moles and Concentration of N₂O₄:

    • Molar mass of N₂O₄ = 92.02 g/mol.
    • Initial moles of N₂O₄ = 36.8 g/92.02 g/mol0.400 mol36.8 \text{ g} / 92.02 \text{ g/mol} \approx 0.400 \text{ mol}.
    • Initial concentration of N₂O₄, [N2O4]0=0.400 M[N₂O₄]_0 = 0.400 \text{ M}.
  2. Calculate KcK_c (Part a):

    • Δng=1\Delta n_g = 1. T=27C=300 KT = 27^\circ\text{C} = 300 \text{ K}. R=0.0821 L atm/mol KR = 0.0821 \text{ L atm/mol K}.
    • Kc=Kp(RT)Δng=0.164(0.0821×300)10.00666 M=6.66×103 MK_c = \frac{K_p}{(RT)^{\Delta n_g}} = \frac{0.164}{(0.0821 \times 300)^1} \approx 0.00666 \text{ M} = 6.66 \times 10^{-3} \text{ M}.
  3. Set up ICE Table and Calculate Equilibrium Concentrations:

    • Reaction: N₂O₄ (g) ⇌ 2NO₂ (g)
    • Initial (M): 0.400 0
    • Change (M): -x +2x
    • Equilibrium (M): 0.400 - x 2x
    • Kc=[NO2]2[N2O4]    0.00666=(2x)20.400xK_c = \frac{[NO₂]^2}{[N₂O₄]} \implies 0.00666 = \frac{(2x)^2}{0.400 - x}.
    • 4x2+0.00666x0.002664=04x^2 + 0.00666x - 0.002664 = 0.
    • Solving for x0.0250 Mx \approx 0.0250 \text{ M}.
  4. Calculate Millimoles of N₂O₄ at Equilibrium (Part b):

    • Equilibrium concentration of N₂O₄ = 0.400 M0.0250 M=0.375 M0.400 \text{ M} - 0.0250 \text{ M} = 0.375 \text{ M}.
    • Moles of N₂O₄ = 0.375 mol/L×1.0 L=0.375 mol0.375 \text{ mol/L} \times 1.0 \text{ L} = 0.375 \text{ mol}.
    • Millimoles of N₂O₄ = 0.375 mol×1000 mmol/mol=375 mmol0.375 \text{ mol} \times 1000 \text{ mmol/mol} = 375 \text{ mmol}.
  5. Calculate Percent Dissociation of N₂O₄ (Part d):

    • Degree of dissociation, α=x[N2O4]0=0.0250 M0.400 M=0.0625\alpha = \frac{x}{[N₂O₄]_0} = \frac{0.0250 \text{ M}}{0.400 \text{ M}} = 0.0625.
    • Percent dissociation = 0.0625×100%=6.25%0.0625 \times 100\% = 6.25\%.
  6. Calculate Total Pressure at Equilibrium (Part c):

    • Equilibrium concentration of NO₂ = 2x=2×0.0250 M=0.0500 M2x = 2 \times 0.0250 \text{ M} = 0.0500 \text{ M}.
    • Moles of NO₂ = 0.0500 mol0.0500 \text{ mol}.
    • Total moles = Moles of N₂O₄ + Moles of NO₂ = 0.375 mol+0.0500 mol=0.425 mol0.375 \text{ mol} + 0.0500 \text{ mol} = 0.425 \text{ mol}.
    • Ptotal=ntotalRTV=0.425 mol×0.0821 L atm/mol K×300 K1.0 L10.5 atmP_{total} = \frac{n_{total}RT}{V} = \frac{0.425 \text{ mol} \times 0.0821 \text{ L atm/mol K} \times 300 \text{ K}}{1.0 \text{ L}} \approx 10.5 \text{ atm}.