Solveeit Logo

Question

Question: Value of: $Tan 20 \cdot Cot 50 \cdot Tan 80 = ?$...

Value of:

Tan20Cot50Tan80=?Tan 20 \cdot Cot 50 \cdot Tan 80 = ?

Answer

3\sqrt{3}

Explanation

Solution

To find the value of the expression Tan20Cot50Tan80Tan 20^\circ \cdot Cot 50^\circ \cdot Tan 80^\circ, we will use trigonometric identities.

Step 1: Convert Cot50Cot 50^\circ to an equivalent TanTan form. We know that Cotθ=Tan(90θ)Cot \theta = Tan (90^\circ - \theta). So, Cot50=Tan(9050)=Tan40Cot 50^\circ = Tan (90^\circ - 50^\circ) = Tan 40^\circ.

Step 2: Substitute the converted term back into the expression. The expression becomes: Tan20Tan40Tan80Tan 20^\circ \cdot Tan 40^\circ \cdot Tan 80^\circ

Step 3: Recognize the pattern. This expression fits the general trigonometric identity: TanθTan(60θ)Tan(60+θ)=Tan(3θ)Tan \theta \cdot Tan (60^\circ - \theta) \cdot Tan (60^\circ + \theta) = Tan (3\theta)

In our expression, if we let θ=20\theta = 20^\circ:

  • The first term is Tan20Tan 20^\circ.
  • The second term is Tan40=Tan(6020)Tan 40^\circ = Tan (60^\circ - 20^\circ).
  • The third term is Tan80=Tan(60+20)Tan 80^\circ = Tan (60^\circ + 20^\circ).

Thus, the expression exactly matches the pattern with θ=20\theta = 20^\circ.

Step 4: Apply the identity. Using the identity, the value of the expression is Tan(3θ)Tan (3 \cdot \theta). Substitute θ=20\theta = 20^\circ: Tan(320)=Tan60Tan (3 \cdot 20^\circ) = Tan 60^\circ

Step 5: Recall the standard value of Tan60Tan 60^\circ. We know that Tan60=3Tan 60^\circ = \sqrt{3}.

Therefore, the value of the given expression is 3\sqrt{3}.