Solveeit Logo

Question

Question: Two curves $x^2 + 2y^2 + 2xy - 2x - 2 = 0$ & $x^2 - y^2 + 2xy - 2y - 1 = 0$ intersects at $A_i$ for ...

Two curves x2+2y2+2xy2x2=0x^2 + 2y^2 + 2xy - 2x - 2 = 0 & x2y2+2xy2y1=0x^2 - y^2 + 2xy - 2y - 1 = 0 intersects at AiA_i for i = 1, 2, 3, 4.

If Li:x=miyL_i: x = m_i y denotes line OAiOA_i where O is origin and i = 1, 2, 3 & 4. Find the equation of circle with centre (3Σm1m2,3Σm1m2m3)(3\Sigma m_1m_2, 3\Sigma m_1m_2m_3) & radius 3Σm13\Sigma m_1.

A

x2+y2+32x64y+1216=0x^2 + y^2 + 32x - 64y + 1216 = 0

B

x2+y2+32x+64y1216=0x^2 + y^2 + 32x + 64y - 1216 = 0

C

x2+y2+32x+64y+1216=0x^2 + y^2 + 32x + 64y + 1216 = 0

D

x2+y2+32x64y1216=0x^2 + y^2 + 32x - 64y - 1216 = 0

Answer

C

Explanation

Solution

The given curves are: C1:x2+2y2+2xy2x2=0C_1: x^2 + 2y^2 + 2xy - 2x - 2 = 0 C2:x2y2+2xy2y1=0C_2: x^2 - y^2 + 2xy - 2y - 1 = 0

The lines OAiOA_i pass through the origin. Let x=myx = my be a line from the origin. Substitute x=myx=my into C1C_1 and C2C_2: For C1C_1: (my)2+2y2+2(my)y2(my)2=0(my)^2 + 2y^2 + 2(my)y - 2(my) - 2 = 0 m2y2+2y2+2my22my2=0m^2y^2 + 2y^2 + 2my^2 - 2my - 2 = 0 (m2+2m+2)y22my2=0(m^2+2m+2)y^2 - 2my - 2 = 0 (1)

For C2C_2: (my)2y2+2(my)y2y1=0(my)^2 - y^2 + 2(my)y - 2y - 1 = 0 m2y2y2+2my22y1=0m^2y^2 - y^2 + 2my^2 - 2y - 1 = 0 (m2+2m1)y22y1=0(m^2+2m-1)y^2 - 2y - 1 = 0 (2)

Let A=m2+2m+2A = m^2+2m+2 and B=m2+2m1B = m^2+2m-1. The system of equations is: Ay22my2=0Ay^2 - 2my - 2 = 0 By22y1=0By^2 - 2y - 1 = 0

To eliminate yy, we can use the method of resultants or solve for yy from one equation and substitute into the other. From (2), 1=By22y1 = By^2 - 2y. Substitute into (1): Ay22my2(By22y)=0Ay^2 - 2my - 2(By^2 - 2y) = 0 Ay22my2By2+4y=0Ay^2 - 2my - 2By^2 + 4y = 0 (A2B)y2+(42m)y=0(A-2B)y^2 + (4-2m)y = 0 Since y0y \neq 0 for the intersection points AiA_i (as y=0y=0 implies x=0x=0, which is the origin, not an intersection point AiA_i), we can divide by yy: (A2B)y+(42m)=0(A-2B)y + (4-2m) = 0 y=2m4A2By = \frac{2m-4}{A-2B}

Now substitute AA and BB back: A2B=(m2+2m+2)2(m2+2m1)=m2+2m+22m24m+2=m22m+4A-2B = (m^2+2m+2) - 2(m^2+2m-1) = m^2+2m+2 - 2m^2-4m+2 = -m^2-2m+4. So, y=2m4m22m+4y = \frac{2m-4}{-m^2-2m+4}.

Substitute this expression for yy back into equation (2): B(2m4m22m+4)22(2m4m22m+4)1=0B \left(\frac{2m-4}{-m^2-2m+4}\right)^2 - 2 \left(\frac{2m-4}{-m^2-2m+4}\right) - 1 = 0 B4(m2)2(m2+2m4)2+4(m2)m2+2m41=0B \frac{4(m-2)^2}{(m^2+2m-4)^2} + \frac{4(m-2)}{m^2+2m-4} - 1 = 0 Multiply the entire equation by (m2+2m4)2(m^2+2m-4)^2: 4B(m2)2+4(m2)(m2+2m4)(m2+2m4)2=04B(m-2)^2 + 4(m-2)(m^2+2m-4) - (m^2+2m-4)^2 = 0 Let P(m)=m2+2m4P(m) = m^2+2m-4. Then B=m2+2m1=P(m)+3B = m^2+2m-1 = P(m)+3. 4(P(m)+3)(m2)2+4(m2)P(m)P(m)2=04(P(m)+3)(m-2)^2 + 4(m-2)P(m) - P(m)^2 = 0 4P(m)(m2)2+12(m2)2+4(m2)P(m)P(m)2=04P(m)(m-2)^2 + 12(m-2)^2 + 4(m-2)P(m) - P(m)^2 = 0 P(m)[4(m2)2+4(m2)P(m)]+12(m2)2=0P(m)[4(m-2)^2 + 4(m-2) - P(m)] + 12(m-2)^2 = 0 P(m)[4(m24m+4)+4m8(m2+2m4)]+12(m24m+4)=0P(m)[4(m^2-4m+4) + 4m-8 - (m^2+2m-4)] + 12(m^2-4m+4) = 0 P(m)[4m216m+16+4m8m22m+4]+12m248m+48=0P(m)[4m^2-16m+16 + 4m-8 - m^2-2m+4] + 12m^2-48m+48 = 0 P(m)[3m214m+12]+12m248m+48=0P(m)[3m^2-14m+12] + 12m^2-48m+48 = 0 Substitute P(m)=m2+2m4P(m) = m^2+2m-4: (m2+2m4)(3m214m+12)+12m248m+48=0(m^2+2m-4)(3m^2-14m+12) + 12m^2-48m+48 = 0 Expand the product: 3m414m3+12m2+6m328m2+24m12m2+56m48+12m248m+48=03m^4 - 14m^3 + 12m^2 + 6m^3 - 28m^2 + 24m - 12m^2 + 56m - 48 + 12m^2 - 48m + 48 = 0 Combine like terms: 3m4+(14+6)m3+(122812+12)m2+(24+5648)m+(48+48)=03m^4 + (-14+6)m^3 + (12-28-12+12)m^2 + (24+56-48)m + (-48+48) = 0 3m48m316m2+32m=03m^4 - 8m^3 - 16m^2 + 32m = 0 Factor out mm: m(3m38m216m+32)=0m(3m^3 - 8m^2 - 16m + 32) = 0 The four roots of this equation are m1,m2,m3,m4m_1, m_2, m_3, m_4. One root is m1=0m_1 = 0. The other three roots are from the cubic equation 3m38m216m+32=03m^3 - 8m^2 - 16m + 32 = 0. Let these be m2,m3,m4m_2, m_3, m_4.

Using Vieta's formulas for 3m38m216m+32=03m^3 - 8m^2 - 16m + 32 = 0: Sum of roots: m2+m3+m4=(8)/3=8/3m_2+m_3+m_4 = -(-8)/3 = 8/3. Sum of products of roots taken two at a time: m2m3+m2m4+m3m4=16/3m_2m_3+m_2m_4+m_3m_4 = -16/3. Product of roots: m2m3m4=(32)/3=32/3m_2m_3m_4 = -(32)/3 = -32/3.

Now calculate the required sums involving all four mim_i: Σm1=m1+(m2+m3+m4)=0+8/3=8/3\Sigma m_1 = m_1 + (m_2+m_3+m_4) = 0 + 8/3 = 8/3. Σm1m2=m1(m2+m3+m4)+(m2m3+m2m4+m3m4)=0+(16/3)=16/3\Sigma m_1m_2 = m_1(m_2+m_3+m_4) + (m_2m_3+m_2m_4+m_3m_4) = 0 + (-16/3) = -16/3. Σm1m2m3=m1(m2m3+m2m4+m3m4)+m2m3m4=0+(32/3)=32/3\Sigma m_1m_2m_3 = m_1(m_2m_3+m_2m_4+m_3m_4) + m_2m_3m_4 = 0 + (-32/3) = -32/3.

The center of the circle is (h,k)=(3Σm1m2,3Σm1m2m3)(h, k) = (3\Sigma m_1m_2, 3\Sigma m_1m_2m_3). h=3×(16/3)=16h = 3 \times (-16/3) = -16. k=3×(32/3)=32k = 3 \times (-32/3) = -32. So, the center is (16,32)(-16, -32).

The radius of the circle is R=3Σm1R = 3\Sigma m_1. R=3×(8/3)=8R = 3 \times (8/3) = 8.

The equation of the circle is (xh)2+(yk)2=R2(x-h)^2 + (y-k)^2 = R^2: (x(16))2+(y(32))2=82(x - (-16))^2 + (y - (-32))^2 = 8^2 (x+16)2+(y+32)2=64(x+16)^2 + (y+32)^2 = 64 x2+32x+256+y2+64y+1024=64x^2 + 32x + 256 + y^2 + 64y + 1024 = 64 x2+y2+32x+64y+256+102464=0x^2 + y^2 + 32x + 64y + 256 + 1024 - 64 = 0 x2+y2+32x+64y+1216=0x^2 + y^2 + 32x + 64y + 1216 = 0

This matches option (C).