Question
Question: Two curves $x^2 + 2y^2 + 2xy - 2x - 2 = 0$ & $x^2 - y^2 + 2xy - 2y - 1 = 0$ intersects at $A_i$ for ...
Two curves x2+2y2+2xy−2x−2=0 & x2−y2+2xy−2y−1=0 intersects at Ai for i = 1, 2, 3, 4.
If Li:x=miy denotes line OAi where O is origin and i = 1, 2, 3 & 4. Find the equation of circle with centre (3Σm1m2,3Σm1m2m3) & radius 3Σm1.

x2+y2+32x−64y+1216=0
x2+y2+32x+64y−1216=0
x2+y2+32x+64y+1216=0
x2+y2+32x−64y−1216=0
C
Solution
The given curves are: C1:x2+2y2+2xy−2x−2=0 C2:x2−y2+2xy−2y−1=0
The lines OAi pass through the origin. Let x=my be a line from the origin. Substitute x=my into C1 and C2: For C1: (my)2+2y2+2(my)y−2(my)−2=0 m2y2+2y2+2my2−2my−2=0 (m2+2m+2)y2−2my−2=0 (1)
For C2: (my)2−y2+2(my)y−2y−1=0 m2y2−y2+2my2−2y−1=0 (m2+2m−1)y2−2y−1=0 (2)
Let A=m2+2m+2 and B=m2+2m−1. The system of equations is: Ay2−2my−2=0 By2−2y−1=0
To eliminate y, we can use the method of resultants or solve for y from one equation and substitute into the other. From (2), 1=By2−2y. Substitute into (1): Ay2−2my−2(By2−2y)=0 Ay2−2my−2By2+4y=0 (A−2B)y2+(4−2m)y=0 Since y=0 for the intersection points Ai (as y=0 implies x=0, which is the origin, not an intersection point Ai), we can divide by y: (A−2B)y+(4−2m)=0 y=A−2B2m−4
Now substitute A and B back: A−2B=(m2+2m+2)−2(m2+2m−1)=m2+2m+2−2m2−4m+2=−m2−2m+4. So, y=−m2−2m+42m−4.
Substitute this expression for y back into equation (2): B(−m2−2m+42m−4)2−2(−m2−2m+42m−4)−1=0 B(m2+2m−4)24(m−2)2+m2+2m−44(m−2)−1=0 Multiply the entire equation by (m2+2m−4)2: 4B(m−2)2+4(m−2)(m2+2m−4)−(m2+2m−4)2=0 Let P(m)=m2+2m−4. Then B=m2+2m−1=P(m)+3. 4(P(m)+3)(m−2)2+4(m−2)P(m)−P(m)2=0 4P(m)(m−2)2+12(m−2)2+4(m−2)P(m)−P(m)2=0 P(m)[4(m−2)2+4(m−2)−P(m)]+12(m−2)2=0 P(m)[4(m2−4m+4)+4m−8−(m2+2m−4)]+12(m2−4m+4)=0 P(m)[4m2−16m+16+4m−8−m2−2m+4]+12m2−48m+48=0 P(m)[3m2−14m+12]+12m2−48m+48=0 Substitute P(m)=m2+2m−4: (m2+2m−4)(3m2−14m+12)+12m2−48m+48=0 Expand the product: 3m4−14m3+12m2+6m3−28m2+24m−12m2+56m−48+12m2−48m+48=0 Combine like terms: 3m4+(−14+6)m3+(12−28−12+12)m2+(24+56−48)m+(−48+48)=0 3m4−8m3−16m2+32m=0 Factor out m: m(3m3−8m2−16m+32)=0 The four roots of this equation are m1,m2,m3,m4. One root is m1=0. The other three roots are from the cubic equation 3m3−8m2−16m+32=0. Let these be m2,m3,m4.
Using Vieta's formulas for 3m3−8m2−16m+32=0: Sum of roots: m2+m3+m4=−(−8)/3=8/3. Sum of products of roots taken two at a time: m2m3+m2m4+m3m4=−16/3. Product of roots: m2m3m4=−(32)/3=−32/3.
Now calculate the required sums involving all four mi: Σm1=m1+(m2+m3+m4)=0+8/3=8/3. Σm1m2=m1(m2+m3+m4)+(m2m3+m2m4+m3m4)=0+(−16/3)=−16/3. Σm1m2m3=m1(m2m3+m2m4+m3m4)+m2m3m4=0+(−32/3)=−32/3.
The center of the circle is (h,k)=(3Σm1m2,3Σm1m2m3). h=3×(−16/3)=−16. k=3×(−32/3)=−32. So, the center is (−16,−32).
The radius of the circle is R=3Σm1. R=3×(8/3)=8.
The equation of the circle is (x−h)2+(y−k)2=R2: (x−(−16))2+(y−(−32))2=82 (x+16)2+(y+32)2=64 x2+32x+256+y2+64y+1024=64 x2+y2+32x+64y+256+1024−64=0 x2+y2+32x+64y+1216=0
This matches option (C).