Question
Question: 6. The value(s) of x satisfying \(1-\log_{9}(x+1)^{2}=\tfrac{1}{2}\log_{\sqrt{3}}\bigl(\tfrac{x+5}{x...
- The value(s) of x satisfying 1−log9(x+1)2=21log3(x+3x+5) is/are:

A
1
B
-2
C
-7
D
-4
Answer
1
Explanation
Solution
Step 1. Rewrite in base 3:
log9(x+1)2=log39log3(x+1)2=22log3(x+1)=log3(x+1), log3(x+3x+5)=log33log3(x+3x+5)=21log3(x+3x+5)=2log3(x+3x+5).Thus the equation becomes
1−log3(x+1)=21⋅2log3(x+3x+5)=log3(x+3x+5).Step 2. Convert 1 to log33:
log33−log3(x+1)=log3(x+13)=log3(x+3x+5).Hence
x+13=x+3x+5⟹3(x+3)=(x+5)(x+1)⟹x2+3x−4=0⟹x=1 or x=−4.Step 3. Check domains:
- x+1>0⟹x>−1.
- x+3x+5>0. Only x=1 satisfies both. Therefore the solution is x=1.