Solveeit Logo

Question

Question: 6. The value(s) of x satisfying \(1-\log_{9}(x+1)^{2}=\tfrac{1}{2}\log_{\sqrt{3}}\bigl(\tfrac{x+5}{x...

  1. The value(s) of x satisfying 1log9(x+1)2=12log3(x+5x+3)1-\log_{9}(x+1)^{2}=\tfrac{1}{2}\log_{\sqrt{3}}\bigl(\tfrac{x+5}{x+3}\bigr) is/are:
A

1

B

-2

C

-7

D

-4

Answer

1

Explanation

Solution

Step 1. Rewrite in base 3:

log9(x+1)2=log3(x+1)2log39=2log3(x+1)2=log3(x+1),\log_{9}(x+1)^{2}=\frac{\log_{3}(x+1)^{2}}{\log_{3}9} =\frac{2\log_{3}(x+1)}{2} =\log_{3}(x+1), log3(x+5x+3)=log3(x+5x+3)log33=log3(x+5x+3)12=2log3(x+5x+3).\log_{\sqrt{3}}\bigl(\tfrac{x+5}{x+3}\bigr) =\frac{\log_{3}\bigl(\tfrac{x+5}{x+3}\bigr)}{\log_{3}\sqrt{3}} =\frac{\log_{3}\bigl(\tfrac{x+5}{x+3}\bigr)}{\tfrac12} =2\log_{3}\bigl(\tfrac{x+5}{x+3}\bigr).

Thus the equation becomes

1log3(x+1)=122log3(x+5x+3)=log3(x+5x+3).1-\log_{3}(x+1) =\tfrac12\cdot2\log_{3}\Bigl(\tfrac{x+5}{x+3}\Bigr) =\log_{3}\Bigl(\tfrac{x+5}{x+3}\Bigr).

Step 2. Convert 1 to log33\log_{3}3:

log33log3(x+1)=log3 ⁣(3x+1)=log3 ⁣(x+5x+3).\log_{3}3-\log_{3}(x+1) =\log_{3}\!\Bigl(\tfrac{3}{x+1}\Bigr) =\log_{3}\!\Bigl(\tfrac{x+5}{x+3}\Bigr).

Hence

3x+1=x+5x+3    3(x+3)=(x+5)(x+1)    x2+3x4=0    x=1 or x=4.\frac{3}{x+1}=\frac{x+5}{x+3} \;\Longrightarrow\; 3(x+3)=(x+5)(x+1) \;\Longrightarrow\; x^{2}+3x-4=0 \;\Longrightarrow\; x=1\text{ or }x=-4.

Step 3. Check domains:

  • x+1>0    x>1x+1>0\implies x>-1.
  • x+5x+3>0\tfrac{x+5}{x+3}>0. Only x=1x=1 satisfies both. Therefore the solution is x=1x=1.