Solveeit Logo

Question

Question: The value of $\lim_{n \to \infty} \frac{1+2-3+4+5-6+.......+(3n-2)+(3n-1)-3n}{\sqrt{2n^4+4n+3}-\sqrt...

The value of limn1+23+4+56+.......+(3n2)+(3n1)3n2n4+4n+3n4+5n+4\lim_{n \to \infty} \frac{1+2-3+4+5-6+.......+(3n-2)+(3n-1)-3n}{\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}} is:

A

3(2\sqrt{2}+1)

B

322\frac{3}{2\sqrt{2}}

C

32(2+1)\frac{3}{2}(\sqrt{2}+1)

D

2+12\frac{\sqrt{2}+1}{2}

Answer

32(2+1)\frac{3}{2}(\sqrt{2}+1)

Explanation

Solution

The numerator series can be grouped as (1+23)+(4+56)++((3n2)+(3n1)3n)(1+2-3) + (4+5-6) + \dots + ((3n-2)+(3n-1)-3n). Each group sums to 0,3,6,,3n30, 3, 6, \dots, 3n-3. The sum of these nn terms is an arithmetic progression: n2(0+3n3)=3n(n1)2\frac{n}{2}(0 + 3n-3) = \frac{3n(n-1)}{2}.

The denominator is Dn=2n4+4n+3n4+5n+4D_n = \sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}. Rationalizing the denominator gives: Dn=(2n4+4n+3)(n4+5n+4)2n4+4n+3+n4+5n+4=n4n12n4+4n+3+n4+5n+4D_n = \frac{(2n^4+4n+3)-(n^4+5n+4)}{\sqrt{2n^4+4n+3}+\sqrt{n^4+5n+4}} = \frac{n^4-n-1}{\sqrt{2n^4+4n+3}+\sqrt{n^4+5n+4}}.

For large nn, the dominant terms are: Numerator 3n22\sim \frac{3n^2}{2}. Denominator n42n4+n4=n42n2+n2=n4(2+1)n2=n22+1\sim \frac{n^4}{\sqrt{2n^4}+\sqrt{n^4}} = \frac{n^4}{\sqrt{2}n^2+n^2} = \frac{n^4}{(\sqrt{2}+1)n^2} = \frac{n^2}{\sqrt{2}+1}.

The limit is: limn3n22n22+1=32(2+1)\lim_{n \to \infty} \frac{\frac{3n^2}{2}}{\frac{n^2}{\sqrt{2}+1}} = \frac{3}{2}(\sqrt{2}+1)