Solveeit Logo

Question

Question: The value of definite integral $\int_{0}^{\pi/2} \frac{\cos x}{(\sin x + \sqrt{3} \cos x)^3} dx$ equ...

The value of definite integral 0π/2cosx(sinx+3cosx)3dx\int_{0}^{\pi/2} \frac{\cos x}{(\sin x + \sqrt{3} \cos x)^3} dx equal to

A

12\frac{1}{2}

B

13\frac{1}{3}

C

16\frac{1}{6}

D

112\frac{1}{12}

Answer

16\frac{1}{6}

Explanation

Solution

To evaluate the definite integral I=0π/2cosx(sinx+3cosx)3dxI = \int_{0}^{\pi/2} \frac{\cos x}{(\sin x + \sqrt{3} \cos x)^3} dx, we can use a substitution.

First, divide the numerator and the denominator by cos3x\cos^3 x: cosx(sinx+3cosx)3=cosxcos3x(sinx+3cosx)3cos3x=sec2x(sinxcosx+3cosxcosx)3=sec2x(tanx+3)3\frac{\cos x}{(\sin x + \sqrt{3} \cos x)^3} = \frac{\frac{\cos x}{\cos^3 x}}{\frac{(\sin x + \sqrt{3} \cos x)^3}{\cos^3 x}} = \frac{\sec^2 x}{\left(\frac{\sin x}{\cos x} + \sqrt{3} \frac{\cos x}{\cos x}\right)^3} = \frac{\sec^2 x}{(\tan x + \sqrt{3})^3} The integral becomes: I=0π/2sec2x(tanx+3)3dxI = \int_{0}^{\pi/2} \frac{\sec^2 x}{(\tan x + \sqrt{3})^3} dx Now, let u=tanx+3u = \tan x + \sqrt{3}. Then, du=sec2xdxdu = \sec^2 x \, dx.

We need to change the limits of integration: When x=0x = 0, u=tan(0)+3=0+3=3u = \tan(0) + \sqrt{3} = 0 + \sqrt{3} = \sqrt{3}. When x=π2x = \frac{\pi}{2}, as xπ2x \to \frac{\pi}{2}^-, tanx\tan x \to \infty, so uu \to \infty.

The integral transforms to: I=31u3duI = \int_{\sqrt{3}}^{\infty} \frac{1}{u^3} du This is an improper integral. Evaluating it: I=3u3du=[u3+13+1]3=[12u2]3I = \int_{\sqrt{3}}^{\infty} u^{-3} du = \left[ \frac{u^{-3+1}}{-3+1} \right]_{\sqrt{3}}^{\infty} = \left[ -\frac{1}{2u^2} \right]_{\sqrt{3}}^{\infty} Applying the limits: I=limb(12b2)(12(3)2)I = \lim_{b \to \infty} \left( -\frac{1}{2b^2} \right) - \left( -\frac{1}{2(\sqrt{3})^2} \right) I=0(123)=0(16)=16I = 0 - \left( -\frac{1}{2 \cdot 3} \right) = 0 - \left( -\frac{1}{6} \right) = \frac{1}{6}