Question
Question: The value of definite integral $\int_{0}^{\pi/2} \frac{\cos x}{(\sin x + \sqrt{3} \cos x)^3} dx$ equ...
The value of definite integral ∫0π/2(sinx+3cosx)3cosxdx equal to

A
21
B
31
C
61
D
121
Answer
61
Explanation
Solution
To evaluate the definite integral I=∫0π/2(sinx+3cosx)3cosxdx, we can use a substitution.
First, divide the numerator and the denominator by cos3x: (sinx+3cosx)3cosx=cos3x(sinx+3cosx)3cos3xcosx=(cosxsinx+3cosxcosx)3sec2x=(tanx+3)3sec2x The integral becomes: I=∫0π/2(tanx+3)3sec2xdx Now, let u=tanx+3. Then, du=sec2xdx.
We need to change the limits of integration: When x=0, u=tan(0)+3=0+3=3. When x=2π, as x→2π−, tanx→∞, so u→∞.
The integral transforms to: I=∫3∞u31du This is an improper integral. Evaluating it: I=∫3∞u−3du=[−3+1u−3+1]3∞=[−2u21]3∞ Applying the limits: I=limb→∞(−2b21)−(−2(3)21) I=0−(−2⋅31)=0−(−61)=61