Solveeit Logo

Question

Question: The exact value of $\frac{60 \sin 82^{\circ} \sin 51^{\circ} \sin 47^{\circ}}{\sin 16^{\circ} + \sin...

The exact value of 60sin82sin51sin47sin16+sin78+sin86\frac{60 \sin 82^{\circ} \sin 51^{\circ} \sin 47^{\circ}}{\sin 16^{\circ} + \sin 78^{\circ} + \sin 86^{\circ}} is -

A

12

B

15

C

16

D

20

Answer

15

Explanation

Solution

The problem asks for the exact value of the trigonometric expression 60sin82sin51sin47sin16+sin78+sin86\frac{60 \sin 82^{\circ} \sin 51^{\circ} \sin 47^{\circ}}{\sin 16^{\circ} + \sin 78^{\circ} + \sin 86^{\circ}}.

Let's analyze the numerator and the denominator separately.

1. Analyze the Numerator:

The numerator is N=60sin82sin51sin47N = 60 \sin 82^{\circ} \sin 51^{\circ} \sin 47^{\circ}. We can use the complementary angle identity: sinx=cos(90x)\sin x = \cos(90^{\circ} - x). Applying this identity to each term in the numerator: sin82=cos(9082)=cos8\sin 82^{\circ} = \cos(90^{\circ} - 82^{\circ}) = \cos 8^{\circ}

sin51=cos(9051)=cos39\sin 51^{\circ} = \cos(90^{\circ} - 51^{\circ}) = \cos 39^{\circ}

sin47=cos(9047)=cos43\sin 47^{\circ} = \cos(90^{\circ} - 47^{\circ}) = \cos 43^{\circ}

Substituting these into the numerator, we get: N=60cos8cos39cos43N = 60 \cos 8^{\circ} \cos 39^{\circ} \cos 43^{\circ}

2. Analyze the Denominator:

The denominator is D=sin16+sin78+sin86D = \sin 16^{\circ} + \sin 78^{\circ} + \sin 86^{\circ}. First, let's check the sum of the angles in the denominator: 16+78+86=18016^{\circ} + 78^{\circ} + 86^{\circ} = 180^{\circ}. This is a key observation. When the sum of three angles A,B,CA, B, C is 180180^{\circ} (i.e., A+B+C=180A+B+C = 180^{\circ}), a useful trigonometric identity for the sum of their sines is: sinA+sinB+sinC=4cos(A2)cos(B2)cos(C2)\sin A + \sin B + \sin C = 4 \cos\left(\frac{A}{2}\right) \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right) Applying this identity to the denominator with A=16A=16^{\circ}, B=78B=78^{\circ}, and C=86C=86^{\circ}: The half-angles are: A2=162=8\frac{A}{2} = \frac{16^{\circ}}{2} = 8^{\circ}

B2=782=39\frac{B}{2} = \frac{78^{\circ}}{2} = 39^{\circ}

C2=862=43\frac{C}{2} = \frac{86^{\circ}}{2} = 43^{\circ}

So, the denominator becomes: D=4cos8cos39cos43D = 4 \cos 8^{\circ} \cos 39^{\circ} \cos 43^{\circ}

3. Compute the Ratio:

Now, substitute the simplified expressions for the numerator and the denominator back into the original expression: 60sin82sin51sin47sin16+sin78+sin86=60cos8cos39cos434cos8cos39cos43\frac{60 \sin 82^{\circ} \sin 51^{\circ} \sin 47^{\circ}}{\sin 16^{\circ} + \sin 78^{\circ} + \sin 86^{\circ}} = \frac{60 \cos 8^{\circ} \cos 39^{\circ} \cos 43^{\circ}}{4 \cos 8^{\circ} \cos 39^{\circ} \cos 43^{\circ}} Since 8,39,438^{\circ}, 39^{\circ}, 43^{\circ} are acute angles, cos8\cos 8^{\circ}, cos39\cos 39^{\circ}, and cos43\cos 43^{\circ} are all non-zero. Therefore, we can cancel the common terms cos8cos39cos43\cos 8^{\circ} \cos 39^{\circ} \cos 43^{\circ} from both the numerator and the denominator: =604= \frac{60}{4} =15= 15

The exact value of the given expression is 15.