Solveeit Logo

Question

Question: 6. The circle $x^2 + y^2 - 2x - 3ky - 2 = 0$ passes through two fixed points...

  1. The circle x2+y22x3ky2=0x^2 + y^2 - 2x - 3ky - 2 = 0 passes through two fixed points
A

(1+3,0)(1 + \sqrt{3}, 0)

B

(1+3,0)(-1 + \sqrt{3}, 0)

C

(31,0)(-\sqrt{3} - 1, 0)

D

(13,0)(1 - \sqrt{3}, 0)

Answer

(1+3,0)(1 + \sqrt{3}, 0) and (13,0)(1 - \sqrt{3}, 0)

Explanation

Solution

  1. For the circle

    x2+y22x3ky2=0,x^2+y^2-2x-3ky-2=0,

    to pass through a fixed point (x0,y0)(x_0,y_0) for all kk, the term containing kk must vanish when we substitute the point. This gives

    3ky0=0y0=0.-3k\,y_0=0 \quad \Rightarrow \quad y_0 = 0.
  2. With y=0y=0, the equation becomes

    x22x2=0.x^2 - 2x - 2=0.
  3. Solving for xx:

    x=2±4+82=2±122=2±232=1±3.x = \frac{2 \pm \sqrt{4 + 8}}{2} = \frac{2 \pm \sqrt{12}}{2} = \frac{2 \pm 2\sqrt{3}}{2} = 1 \pm \sqrt{3}.

Thus, the fixed points are (1+3,0)\left(1+\sqrt{3}, 0\right) and (13,0)\left(1-\sqrt{3}, 0\right).