Solveeit Logo

Question

Question: The base of the pyramid AOBC is an equilateral triangle OBC with each side equal to $4\sqrt{2}$, 'O'...

The base of the pyramid AOBC is an equilateral triangle OBC with each side equal to 424\sqrt{2}, 'O' is the origin of reference, AO is perpendicular to the plane of OBC\triangle OBC and AO=2|\overrightarrow{AO}| = 2. Then the cosine of the angle between the skew straight lines one passing through A and the mid point of OB and the other passing through O and the mid point of BC is :

A

12\frac{1}{\sqrt{2}}

B

35\frac{3}{\sqrt{5}}

C

320\frac{3}{\sqrt{20}}

D

12\frac{1}{\sqrt{2}}

Answer

12\frac{1}{\sqrt{2}}

Explanation

Solution

Solution Outline

  1. Coordinate Assignment

    • Let O=(0,0,0)O=(0,0,0).
    • Place B=(42,0,0)B=(4\sqrt2,0,0).
    • Place C=(22,26,0)C=\bigl(2\sqrt2,2\sqrt6,0\bigr) so that OBC\triangle OBC is equilateral of side 424\sqrt2.
    • Since AOAO\perp plane OBCOBC and AO=2|AO|=2, take A=(0,0,2)A=(0,0,2).
  2. Mid-points

    • Mid-point of OBOB, M1=(22,0,0)M_1 =\bigl(2\sqrt2,0,0\bigr).
    • Mid-point of BCBC, M2=(32,6,0)M_2 =\bigl(3\sqrt2,\sqrt6,0\bigr).
  3. Direction Vectors

    • For the line through AA and M1M_1:
      v=M1A=(22,0,2)=2(2,0,1)\displaystyle \mathbf{v} = M_1 - A = (2\sqrt2,0,-2) = 2(\sqrt2,0,-1).
    • For the line through OO and M2M_2:
      w=M2O=(32,6,0)\displaystyle \mathbf{w} = M_2 - O = (3\sqrt2,\sqrt6,0).
  4. Compute Cosine

    vw=2(232+06+(1)0)=12, \mathbf{v}\cdot\mathbf{w} = 2\bigl(\sqrt2\cdot3\sqrt2 +0\cdot\sqrt6 +(-1)\cdot0\bigr) = 12, v=2(2)2+(1)2=23,w=(32)2+(6)2=26. \|\mathbf{v}\| = 2\sqrt{(\sqrt2)^2+(-1)^2} = 2\sqrt3,\quad \|\mathbf{w}\| = \sqrt{(3\sqrt2)^2+(\sqrt6)^2} = 2\sqrt6.

    Hence

    cosθ=vwvw=12(23)(26)=12418=318=12. \cos\theta = \frac{|\mathbf{v}\cdot\mathbf{w}|}{\|\mathbf{v}\|\,\|\mathbf{w}\|} = \frac{12}{(2\sqrt3)(2\sqrt6)} = \frac{12}{4\sqrt{18}} = \frac{3}{\sqrt{18}} = \frac{1}{\sqrt2}.