Solveeit Logo

Question

Question: Six point mass particles are placed on horizontal surface such that arrangement form a regular hexag...

Six point mass particles are placed on horizontal surface such that arrangement form a regular hexagon as shown. Calculate coordinate of center of mass of arrangement.

A

(-1,3\sqrt{3})

B

(3\sqrt{3},1)

C

(-3\sqrt{3},1)

D

(-3\sqrt{3},-1)

Answer

(-\sqrt{3},-1)

Explanation

Solution

The center of mass XCMX_{CM} and YCMY_{CM} are calculated using the formulas: XCM=miximiX_{CM} = \frac{\sum m_i x_i}{\sum m_i} and YCM=miyimiY_{CM} = \frac{\sum m_i y_i}{\sum m_i}. Assuming the hexagon is centered at the origin and the side length is R=7R=7. The masses and their coordinates are:

  1. mm at (0,R)(0, R)
  2. 2m2m at (32R,12R)(\frac{\sqrt{3}}{2}R, \frac{1}{2}R)
  3. 3m3m at (32R,12R)(\frac{\sqrt{3}}{2}R, -\frac{1}{2}R)
  4. 4m4m at (0,R)(0, -R)
  5. 5m5m at (32R,12R)(-\frac{\sqrt{3}}{2}R, -\frac{1}{2}R)
  6. 6m6m at (32R,12R)(-\frac{\sqrt{3}}{2}R, \frac{1}{2}R)

Total mass M=21mM = 21m.

mixi=m(0)+2m(32R)+3m(32R)+4m(0)+5m(32R)+6m(32R)=3mR3\sum m_i x_i = m(0) + 2m(\frac{\sqrt{3}}{2}R) + 3m(\frac{\sqrt{3}}{2}R) + 4m(0) + 5m(-\frac{\sqrt{3}}{2}R) + 6m(-\frac{\sqrt{3}}{2}R) = -3mR\sqrt{3}. miyi=m(R)+2m(12R)+3m(12R)+4m(R)+5m(12R)+6m(12R)=3mR\sum m_i y_i = m(R) + 2m(\frac{1}{2}R) + 3m(-\frac{1}{2}R) + 4m(-R) + 5m(-\frac{1}{2}R) + 6m(\frac{1}{2}R) = -3mR.

Substituting R=7R=7: XCM=3m(7)321m=3X_{CM} = \frac{-3m(7)\sqrt{3}}{21m} = -\sqrt{3}. YCM=3m(7)21m=1Y_{CM} = \frac{-3m(7)}{21m} = -1. The center of mass is (3,1)(-\sqrt{3}, -1).