Solveeit Logo

Question

Question: 6 $\log_a x. \log_{10} a. \log_a 5$ - 3$^{\log_{10}(x/10)}$ = 9$^{\log_{100} x + \log_4 2}$ or x: ...

6 logax.log10a.loga5\log_a x. \log_{10} a. \log_a 5

  • 3log10(x/10)^{\log_{10}(x/10)} = 9log100x+log42^{\log_{100} x + \log_4 2}

or x: - 56\frac{5}{6}

Answer

The equation as stated has no real solution.

Explanation

Solution

The given equation is logax.log10a.loga53log10(x/10)=9log100x+log42\log_a x. \log_{10} a. \log_a 5 - 3^{\log_{10}(x/10)} = 9^{\log_{100} x + \log_4 2}.

Assuming a=5a=5 for simplification, the first term becomes log10xloga5=log10xlog55=log10x\log_{10} x \cdot \log_a 5 = \log_{10} x \cdot \log_5 5 = \log_{10} x.

The second term is 3log10(x/10)- 3^{\log_{10}(x/10)}. Using logarithm properties, log10(x/10)=log10xlog1010=log10x1\log_{10}(x/10) = \log_{10} x - \log_{10} 10 = \log_{10} x - 1. So, the term is 3log10x1=3log10x3-3^{\log_{10} x - 1} = -\frac{3^{\log_{10} x}}{3}.

The third term is 9log100x+log429^{\log_{100} x + \log_4 2}. log100x=log102x=12log10x\log_{100} x = \log_{10^2} x = \frac{1}{2} \log_{10} x. log42=log222=12log22=12\log_4 2 = \log_{2^2} 2 = \frac{1}{2} \log_2 2 = \frac{1}{2}. So, the exponent is 12log10x+12=12(log10x+1)\frac{1}{2} \log_{10} x + \frac{1}{2} = \frac{1}{2}(\log_{10} x + 1). The term becomes 912(log10x+1)=(91/2)log10x+1=3log10x+1=3log10x31=33log10x9^{\frac{1}{2}(\log_{10} x + 1)} = (9^{1/2})^{\log_{10} x + 1} = 3^{\log_{10} x + 1} = 3^{\log_{10} x} \cdot 3^1 = 3 \cdot 3^{\log_{10} x}.

Substituting these back into the equation: log10x133log10x=33log10x\log_{10} x - \frac{1}{3} \cdot 3^{\log_{10} x} = 3 \cdot 3^{\log_{10} x}.

Let Y=log10xY = \log_{10} x. The equation becomes: Y133Y=33YY - \frac{1}{3} \cdot 3^Y = 3 \cdot 3^Y. Y=33Y+133YY = 3 \cdot 3^Y + \frac{1}{3} \cdot 3^Y. Y=(3+13)3YY = \left(3 + \frac{1}{3}\right) \cdot 3^Y. Y=1033YY = \frac{10}{3} \cdot 3^Y.

This is a transcendental equation. Let f(Y)=Yf(Y) = Y and g(Y)=1033Yg(Y) = \frac{10}{3} \cdot 3^Y. The derivative of f(Y)f(Y) is f(Y)=1f'(Y) = 1. The derivative of g(Y)g(Y) is g(Y)=1033Yln3g'(Y) = \frac{10}{3} \cdot 3^Y \cdot \ln 3. The minimum value of g(Y)f(Y)g(Y) - f(Y) occurs when g(Y)=f(Y)g'(Y) = f'(Y), which is 1033Yln3=1\frac{10}{3} \cdot 3^Y \cdot \ln 3 = 1. 3Y=310ln33^Y = \frac{3}{10 \ln 3}. At this minimum, g(Y)f(Y)=103310ln3log3(310ln3)=1ln3ln(3/(10ln3))ln3g(Y) - f(Y) = \frac{10}{3} \cdot \frac{3}{10 \ln 3} - \log_3\left(\frac{3}{10 \ln 3}\right) = \frac{1}{\ln 3} - \frac{\ln(3/(10 \ln 3))}{\ln 3}. Since ln31.0986\ln 3 \approx 1.0986, 10ln310.98610 \ln 3 \approx 10.986. 3Y310.9860.2733^Y \approx \frac{3}{10.986} \approx 0.273. Y=log3(0.273)<0Y = \log_3(0.273) < 0. The minimum value of g(Y)f(Y)g(Y) - f(Y) is approximately 11.0986ln(0.273)1.09860.911.2971.09860.91+1.18>0\frac{1}{1.0986} - \frac{\ln(0.273)}{1.0986} \approx 0.91 - \frac{-1.297}{1.0986} \approx 0.91 + 1.18 > 0. Since the minimum value of g(Y)f(Y)g(Y) - f(Y) is positive, g(Y)>f(Y)g(Y) > f(Y) for all real YY. Therefore, the equation Y=1033YY = \frac{10}{3} \cdot 3^Y has no real solution.

The number '6' at the beginning is likely an equation number. The hint "or x: - 56\frac{5}{6}" is invalid as the argument of a logarithm must be positive. Given the strict interpretation of the question, there is no real solution for xx.