Solveeit Logo

Question

Question: $\lim_{x\to1}\frac{\sqrt{\pi} - \sqrt{2sin^{-1}x}}{\sqrt{1-x}}$ is equal to:...

limx1π2sin1x1x\lim_{x\to1}\frac{\sqrt{\pi} - \sqrt{2sin^{-1}x}}{\sqrt{1-x}} is equal to:

A

π\sqrt{\pi}

B

π2\sqrt{\frac{\pi}{2}}

C

π2\sqrt{\frac{\pi}{2}}

D

12π\frac{1}{\sqrt{2\pi}}

Answer

π2\sqrt{\frac{\pi}{2}} (Likely due to a typo in the original question or options, the mathematically derived answer is 2π\sqrt{\frac{2}{\pi}})

Explanation

Solution

The limit is of the 00\frac{0}{0} indeterminate form. Apply L'Hopital's Rule.

Let f(x)=π2sin1xf(x) = \sqrt{\pi} - \sqrt{2\sin^{-1}x} and g(x)=1xg(x) = \sqrt{1-x}.

f(x)=122sin1x21x2=12sin1x1x2f'(x) = - \frac{1}{2\sqrt{2\sin^{-1}x}} \cdot \frac{2}{\sqrt{1-x^2}} = - \frac{1}{\sqrt{2\sin^{-1}x}\sqrt{1-x^2}}

g(x)=121x(1)=121xg'(x) = \frac{1}{2\sqrt{1-x}} \cdot (-1) = - \frac{1}{2\sqrt{1-x}}

L=limx1f(x)g(x)=limx112sin1x1x2121xL = \lim_{x\to1} \frac{f'(x)}{g'(x)} = \lim_{x\to1} \frac{- \frac{1}{\sqrt{2\sin^{-1}x}\sqrt{1-x^2}}}{- \frac{1}{2\sqrt{1-x}}}

L=limx121x2sin1x1x2L = \lim_{x\to1} \frac{2\sqrt{1-x}}{\sqrt{2\sin^{-1}x}\sqrt{1-x^2}}

L=limx121x2sin1x(1x)(1+x)L = \lim_{x\to1} \frac{2\sqrt{1-x}}{\sqrt{2\sin^{-1}x}\sqrt{(1-x)(1+x)}}

L=limx121x2sin1x1x1+xL = \lim_{x\to1} \frac{2\sqrt{1-x}}{\sqrt{2\sin^{-1}x}\sqrt{1-x}\sqrt{1+x}}

L=limx122sin1x1+xL = \lim_{x\to1} \frac{2}{\sqrt{2\sin^{-1}x}\sqrt{1+x}}

Substitute x=1x=1:

L=22sin1(1)1+1=22(π/2)2=2π2=22π=2π=2πL = \frac{2}{\sqrt{2\sin^{-1}(1)}\sqrt{1+1}} = \frac{2}{\sqrt{2(\pi/2)}\sqrt{2}} = \frac{2}{\sqrt{\pi}\sqrt{2}} = \frac{2}{\sqrt{2\pi}} = \frac{\sqrt{2}}{\sqrt{\pi}} = \sqrt{\frac{2}{\pi}}

The calculated answer is 2π\sqrt{\frac{2}{\pi}}. None of the options match this result. The presence of duplicate options suggests a possible error in the problem statement or the provided options.