Question
Question: $\lim_{x\to1}\frac{\sqrt{\pi} - \sqrt{2sin^{-1}x}}{\sqrt{1-x}}$ is equal to:...
limx→11−xπ−2sin−1x is equal to:

A
π
B
2π
C
2π
D
2π1
Answer
2π (Likely due to a typo in the original question or options, the mathematically derived answer is π2)
Explanation
Solution
The limit is of the 00 indeterminate form. Apply L'Hopital's Rule.
Let f(x)=π−2sin−1x and g(x)=1−x.
f′(x)=−22sin−1x1⋅1−x22=−2sin−1x1−x21
g′(x)=21−x1⋅(−1)=−21−x1
L=limx→1g′(x)f′(x)=limx→1−21−x1−2sin−1x1−x21
L=limx→12sin−1x1−x221−x
L=limx→12sin−1x(1−x)(1+x)21−x
L=limx→12sin−1x1−x1+x21−x
L=limx→12sin−1x1+x2
Substitute x=1:
L=2sin−1(1)1+12=2(π/2)22=π22=2π2=π2=π2
The calculated answer is π2. None of the options match this result. The presence of duplicate options suggests a possible error in the problem statement or the provided options.