Solveeit Logo

Question

Question: Let [x] denotes the greatest integer function and f(x) be defined as $$f(x) = \begin{cases} \frac{[x...

Let [x] denotes the greatest integer function and f(x) be defined as

\frac{[x+1]}{(\exp{(x + 2)\ln4)}) 4 -16} ; x<2\\ \frac{4^x-16}{1-\cos(x-2)} \\ a\cdot\frac{1-\cos(x-2)}{(x-2) \tan(x-2)} ; x>2 \end{cases}$$ Find the value of a for which f(x) may be continuous at x = 2.
A

1/60

Answer

1/60

Explanation

Solution

For continuity at x=2, the Left-Hand Limit (LHL) must equal the Right-Hand Limit (RHL).

1. Left-Hand Limit (LHL): limx2f(x)=limx2[x+1]4x+216=24416=225616=2240=1120\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{[x+1]}{4^{x+2} - 16} = \frac{2}{4^{4} - 16} = \frac{2}{256 - 16} = \frac{2}{240} = \frac{1}{120}

2. Right-Hand Limit (RHL): limx2+f(x)=limx2+a1cos(x2)(x2)tan(x2)\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} a \cdot \frac{1-\cos(x-2)}{(x-2) \tan(x-2)} Let h=x2h = x-2. As x2+x \to 2^+, h0+h \to 0^+. limh0+a1coshhtanh=alimh0+1coshh2htanh=a121=a2\lim_{h \to 0^+} a \cdot \frac{1-\cos h}{h \tan h} = a \cdot \lim_{h \to 0^+} \frac{1-\cos h}{h^2} \cdot \frac{h}{\tan h} = a \cdot \frac{1}{2} \cdot 1 = \frac{a}{2}

3. Equate LHL and RHL for continuity: 1120=a2\frac{1}{120} = \frac{a}{2} a=2120=160a = \frac{2}{120} = \frac{1}{60}

Therefore, the value of a for which f(x) may be continuous at x = 2 is 160\frac{1}{60}.