Question
Question: Let [x] denotes the greatest integer function and f(x) be defined as $$f(x) = \begin{cases} \frac{[x...
Let [x] denotes the greatest integer function and f(x) be defined as
\frac{[x+1]}{(\exp{(x + 2)\ln4)}) 4 -16} ; x<2\\ \frac{4^x-16}{1-\cos(x-2)} \\ a\cdot\frac{1-\cos(x-2)}{(x-2) \tan(x-2)} ; x>2 \end{cases}$$ Find the value of a for which f(x) may be continuous at x = 2.
A
1/60
Answer
1/60
Explanation
Solution
For continuity at x=2, the Left-Hand Limit (LHL) must equal the Right-Hand Limit (RHL).
1. Left-Hand Limit (LHL): limx→2−f(x)=limx→2−4x+2−16[x+1]=44−162=256−162=2402=1201
2. Right-Hand Limit (RHL): limx→2+f(x)=limx→2+a⋅(x−2)tan(x−2)1−cos(x−2) Let h=x−2. As x→2+, h→0+. limh→0+a⋅htanh1−cosh=a⋅limh→0+h21−cosh⋅tanhh=a⋅21⋅1=2a
3. Equate LHL and RHL for continuity: 1201=2a a=1202=601
Therefore, the value of a for which f(x) may be continuous at x = 2 is 601.