Question
Question: Let $\left(2+\frac{x^4}{x^2+1}\right)^{10} = A_{20}x^{20} + A_{19}x^{19} + A_{18}x^{18} + .... A_1x ...
Let (2+x2+1x4)10=A20x20+A19x19+A18x18+....A1x+A0+x2+1B1+(x2+1)2B2+...(x2+1)10B10 where A20,A19,A18,...A1,A0,B1,B2,.......B10 are constants then find A0.
Answer
638
Explanation
Solution
We start with
(2+x2+1x4)10=(x2+12(x2+1)+x4)10=(x2+1)10(x4+2x2+2)10.Notice that
x4+2x2+2=(x2+1)2+1.Thus,
(x4+2x2+2)10=[(x2+1)2+1]10=j=0∑10(j10)(x2+1)2j.Dividing by (x2+1)10 gives
(2+x2+1x4)10=j=0∑10(j10)(x2+1)2j−10.The expression is written as a sum of a polynomial part Q(x) and a fractional part. The polynomial part comes from terms with nonnegative exponents, i.e., 2j−10≥0 or j≥5. Hence,
Q(x)=j=5∑10(j10)(x2+1)2j−10.To find A0, the constant term in the polynomial part, set x=0:
A0=Q(0)=j=5∑10(j10)(1)2j−10=j=5∑10(j10).We know that
j=0∑10(j10)=210=1024,and by symmetry,
j=5∑10(j10)=21024+(510).Since (510)=252,
A0=21024+252=21276=638.