Solveeit Logo

Question

Question: Let $\left(2+\frac{x^4}{x^2+1}\right)^{10} = A_{20}x^{20} + A_{19}x^{19} + A_{18}x^{18} + .... A_1x ...

Let (2+x4x2+1)10=A20x20+A19x19+A18x18+....A1x+A0+B1x2+1+B2(x2+1)2+...B10(x2+1)10\left(2+\frac{x^4}{x^2+1}\right)^{10} = A_{20}x^{20} + A_{19}x^{19} + A_{18}x^{18} + .... A_1x + A_0 + \frac{B_1}{x^2+1} + \frac{B_2}{(x^2+1)^2} + ... \frac{B_{10}}{(x^2+1)^{10}} where A20,A19,A18,...A1,A0,B1,B2,.......B10A_{20}, A_{19}, A_{18},...A_1, A_0, B_1, B_2, ....... B_{10} are constants then find A0A_0.

Answer

638

Explanation

Solution

We start with

(2+x4x2+1)10=(2(x2+1)+x4x2+1)10=(x4+2x2+2)10(x2+1)10.\left(2+\frac{x^4}{x^2+1}\right)^{10}=\left(\frac{2(x^2+1)+x^4}{x^2+1}\right)^{10} =\frac{(x^4+2x^2+2)^{10}}{(x^2+1)^{10}}.

Notice that

x4+2x2+2=(x2+1)2+1.x^4+2x^2+2=(x^2+1)^2+1.

Thus,

(x4+2x2+2)10=[(x2+1)2+1]10=j=010(10j)(x2+1)2j.(x^4+2x^2+2)^{10} = \left[(x^2+1)^2+1\right]^{10} = \sum_{j=0}^{10} \binom{10}{j}(x^2+1)^{2j}.

Dividing by (x2+1)10(x^2+1)^{10} gives

(2+x4x2+1)10=j=010(10j)(x2+1)2j10.\left(2+\frac{x^4}{x^2+1}\right)^{10} = \sum_{j=0}^{10} \binom{10}{j}(x^2+1)^{2j-10}.

The expression is written as a sum of a polynomial part Q(x)Q(x) and a fractional part. The polynomial part comes from terms with nonnegative exponents, i.e., 2j1002j-10\ge0 or j5j\ge5. Hence,

Q(x)=j=510(10j)(x2+1)2j10.Q(x)=\sum_{j=5}^{10} \binom{10}{j}(x^2+1)^{2j-10}.

To find A0A_0, the constant term in the polynomial part, set x=0x=0:

A0=Q(0)=j=510(10j)(1)2j10=j=510(10j).A_0= Q(0)=\sum_{j=5}^{10} \binom{10}{j}(1)^{2j-10}=\sum_{j=5}^{10} \binom{10}{j}.

We know that

j=010(10j)=210=1024,\sum_{j=0}^{10} \binom{10}{j}=2^{10}=1024,

and by symmetry,

j=510(10j)=1024+(105)2.\sum_{j=5}^{10} \binom{10}{j}=\frac{1024+\binom{10}{5}}{2}.

Since (105)=252\binom{10}{5}=252,

A0=1024+2522=12762=638.A_0=\frac{1024+252}{2}=\frac{1276}{2}=638.