Solveeit Logo

Question

Question: Let $F(x) = \int_{\sin x}^{\cos x} e^{(1+\arcsin t)^2} dt$ on $[0, \frac{\pi}{2}]$ then...

Let F(x)=sinxcosxe(1+arcsint)2dtF(x) = \int_{\sin x}^{\cos x} e^{(1+\arcsin t)^2} dt on [0,π2][0, \frac{\pi}{2}] then

A

F''(c) = 0 for all c in (0, \frac{\pi}{2})

B

F''(c) = 0 for some c in (0, \frac{\pi}{2})

C

F'(c) != 0 for all c in (0, \frac{\pi}{2})

D

F'(c) = 0 for some c in (0, \frac{\pi}{2})

Answer

(B), (C)

Explanation

Solution

Let f(t)=e(1+arcsint)2f(t) = e^{(1+\arcsin t)^2}. Then F(x)=sinxcosxf(t)dtF(x) = \int_{\sin x}^{\cos x} f(t) dt. By the Fundamental Theorem of Calculus and the chain rule, F(x)=f(cosx)(sinx)f(sinx)(cosx)F'(x) = f(\cos x) \cdot (-\sin x) - f(\sin x) \cdot (\cos x). For x[0,π2]x \in [0, \frac{\pi}{2}], we have arcsin(cosx)=π2x\arcsin(\cos x) = \frac{\pi}{2} - x and arcsin(sinx)=x\arcsin(\sin x) = x. So, F(x)=e(1+π2x)2sinxe(1+x)2cosxF'(x) = -e^{(1+\frac{\pi}{2}-x)^2} \sin x - e^{(1+x)^2} \cos x. For x(0,π2)x \in (0, \frac{\pi}{2}), sinx>0\sin x > 0, cosx>0\cos x > 0, and the exponential terms are positive. Thus, e(1+π2x)2sinx<0-e^{(1+\frac{\pi}{2}-x)^2} \sin x < 0 and e(1+x)2cosx<0-e^{(1+x)^2} \cos x < 0. Therefore, F(x)<0F'(x) < 0 for all x(0,π2)x \in (0, \frac{\pi}{2}). This implies F(c)0F'(c) \neq 0 for some c(0,π2)c \in (0, \frac{\pi}{2}), making option (C) true and option (D) false.

To analyze F(x)F''(x), we differentiate F(x)F'(x): F(x)=ddx(e(1+π2x)2sinx)ddx(e(1+x)2cosx)F''(x) = \frac{d}{dx}(-e^{(1+\frac{\pi}{2}-x)^2} \sin x) - \frac{d}{dx}(e^{(1+x)^2} \cos x) Using the product rule and chain rule: ddx(e(1+π2x)2sinx)=e(1+π2x)22(1+π2x)(1)sinx+e(1+π2x)2cosx\frac{d}{dx}(e^{(1+\frac{\pi}{2}-x)^2} \sin x) = e^{(1+\frac{\pi}{2}-x)^2} \cdot 2(1+\frac{\pi}{2}-x)(-1) \sin x + e^{(1+\frac{\pi}{2}-x)^2} \cos x =2(1+π2x)e(1+π2x)2sinx+e(1+π2x)2cosx= -2(1+\frac{\pi}{2}-x)e^{(1+\frac{\pi}{2}-x)^2} \sin x + e^{(1+\frac{\pi}{2}-x)^2} \cos x

ddx(e(1+x)2cosx)=e(1+x)22(1+x)cosx+e(1+x)2(sinx)\frac{d}{dx}(e^{(1+x)^2} \cos x) = e^{(1+x)^2} \cdot 2(1+x) \cos x + e^{(1+x)^2} (-\sin x) =2(1+x)e(1+x)2cosxe(1+x)2sinx= 2(1+x)e^{(1+x)^2} \cos x - e^{(1+x)^2} \sin x

F(x)=[2(1+π2x)e(1+π2x)2sinx+e(1+π2x)2cosx][2(1+x)e(1+x)2cosxe(1+x)2sinx]F''(x) = -[-2(1+\frac{\pi}{2}-x)e^{(1+\frac{\pi}{2}-x)^2} \sin x + e^{(1+\frac{\pi}{2}-x)^2} \cos x] - [2(1+x)e^{(1+x)^2} \cos x - e^{(1+x)^2} \sin x] F(x)=2(1+π2x)e(1+π2x)2sinxe(1+π2x)2cosx2(1+x)e(1+x)2cosx+e(1+x)2sinxF''(x) = 2(1+\frac{\pi}{2}-x)e^{(1+\frac{\pi}{2}-x)^2} \sin x - e^{(1+\frac{\pi}{2}-x)^2} \cos x - 2(1+x)e^{(1+x)^2} \cos x + e^{(1+x)^2} \sin x

Consider the limits as x0+x \to 0^+ and xπ2x \to \frac{\pi}{2}^-. As x0+x \to 0^+: F(x)2(1+π2)e(1+π2)2xe(1+π2)212(1)e121+e120F''(x) \approx 2(1+\frac{\pi}{2})e^{(1+\frac{\pi}{2})^2} \cdot x - e^{(1+\frac{\pi}{2})^2} \cdot 1 - 2(1)e^{1^2} \cdot 1 + e^{1^2} \cdot 0 F(x)0e(1+π2)22e=e(1+π2)22eF''(x) \approx 0 - e^{(1+\frac{\pi}{2})^2} - 2e = -e^{(1+\frac{\pi}{2})^2} - 2e. This is negative.

As xπ2x \to \frac{\pi}{2}^- (let x=π2ϵx = \frac{\pi}{2} - \epsilon for small ϵ>0\epsilon > 0): 1+π2x=1+ϵ1+\frac{\pi}{2}-x = 1+\epsilon sinx=sin(π2ϵ)=cosϵ1\sin x = \sin(\frac{\pi}{2}-\epsilon) = \cos \epsilon \approx 1 cosx=cos(π2ϵ)=sinϵϵ\cos x = \cos(\frac{\pi}{2}-\epsilon) = \sin \epsilon \approx \epsilon 1+x=1+π2ϵ1+x = 1+\frac{\pi}{2}-\epsilon

F(x)2(1+ϵ)e(1+ϵ)21e(1+ϵ)2ϵ2(1+π2ϵ)e(1+π2ϵ)2ϵ+e(1+π2ϵ)21F''(x) \approx 2(1+\epsilon)e^{(1+\epsilon)^2} \cdot 1 - e^{(1+\epsilon)^2} \cdot \epsilon - 2(1+\frac{\pi}{2}-\epsilon)e^{(1+\frac{\pi}{2}-\epsilon)^2} \cdot \epsilon + e^{(1+\frac{\pi}{2}-\epsilon)^2} \cdot 1 As ϵ0+\epsilon \to 0^+, F(x)2(1)e121e1202(1+π2)e(1+π2)20+e(1+π2)21F''(x) \approx 2(1)e^{1^2} \cdot 1 - e^{1^2} \cdot 0 - 2(1+\frac{\pi}{2})e^{(1+\frac{\pi}{2})^2} \cdot 0 + e^{(1+\frac{\pi}{2})^2} \cdot 1 F(x)2e+e(1+π2)2F''(x) \approx 2e + e^{(1+\frac{\pi}{2})^2}. This is positive.

Since F(x)F''(x) is continuous on (0,π2)(0, \frac{\pi}{2}) and changes sign from negative to positive, by the Intermediate Value Theorem, there exists some c(0,π2)c \in (0, \frac{\pi}{2}) such that F(c)=0F''(c) = 0. Thus, option (B) is true. Option (A) is false because F(x)F''(x) is not identically zero. The correct options are (B) and (C).