Solveeit Logo

Question

Question: $\int \frac{2x+3}{5x-1} dx$...

2x+35x1dx\int \frac{2x+3}{5x-1} dx

Answer

25x+1725ln5x1+C\frac{2}{5}x + \frac{17}{25} \ln|5x-1| + C

Explanation

Solution

To integrate the given function, we will use the method of adjusting the numerator to be a multiple of the denominator plus a constant.

Let the given integral be I=2x+35x1dxI = \int \frac{2x+3}{5x-1} dx.

First, we express the numerator (2x+32x+3) in terms of the denominator (5x15x-1). We want to find constants A and B such that: 2x+3=A(5x1)+B2x+3 = A(5x-1) + B

Expand the right side: 2x+3=5AxA+B2x+3 = 5Ax - A + B

Now, compare the coefficients of xx and the constant terms on both sides: Comparing coefficients of xx: 5A=2    A=255A = 2 \implies A = \frac{2}{5}

Comparing constant terms: A+B=3-A + B = 3 Substitute the value of AA: 25+B=3-\frac{2}{5} + B = 3 B=3+25B = 3 + \frac{2}{5} B=15+25=175B = \frac{15+2}{5} = \frac{17}{5}

Now substitute these values of A and B back into the numerator expression: 2x+3=25(5x1)+1752x+3 = \frac{2}{5}(5x-1) + \frac{17}{5}

Substitute this back into the integral: I=25(5x1)+1755x1dxI = \int \frac{\frac{2}{5}(5x-1) + \frac{17}{5}}{5x-1} dx

Separate the terms in the numerator: I=(25(5x1)5x1+1755x1)dxI = \int \left( \frac{\frac{2}{5}(5x-1)}{5x-1} + \frac{\frac{17}{5}}{5x-1} \right) dx I=(25+175(5x1))dxI = \int \left( \frac{2}{5} + \frac{17}{5(5x-1)} \right) dx

Now, integrate term by term: I=25dx+175(5x1)dxI = \int \frac{2}{5} dx + \int \frac{17}{5(5x-1)} dx I=251dx+17515x1dxI = \frac{2}{5} \int 1 dx + \frac{17}{5} \int \frac{1}{5x-1} dx

The first integral is straightforward: 1dx=x\int 1 dx = x

For the second integral, 15x1dx\int \frac{1}{5x-1} dx, we use a substitution. Let u=5x1u = 5x-1. Then, differentiate uu with respect to xx: dudx=5\frac{du}{dx} = 5 du=5dx    dx=15dudu = 5 dx \implies dx = \frac{1}{5} du

Substitute uu and dxdx into the integral: 1u(15du)=151udu\int \frac{1}{u} \left(\frac{1}{5} du\right) = \frac{1}{5} \int \frac{1}{u} du We know that 1udu=lnu+C\int \frac{1}{u} du = \ln|u| + C' So, 15lnu+C=15ln5x1+C\frac{1}{5} \ln|u| + C' = \frac{1}{5} \ln|5x-1| + C'

Now, combine all parts of the integral: I=25x+175(15ln5x1)+CI = \frac{2}{5}x + \frac{17}{5} \left( \frac{1}{5} \ln|5x-1| \right) + C I=25x+1725ln5x1+CI = \frac{2}{5}x + \frac{17}{25} \ln|5x-1| + C where C is the constant of integration.