Solveeit Logo

Question

Question: If $\vec{a}$, $\vec{b}$, $\vec{c}$ are three non-zero, non-coplanar vectors and $\vec{b_1} = \vec{b}...

If a\vec{a}, b\vec{b}, c\vec{c} are three non-zero, non-coplanar vectors and b1=bb.aa2a\vec{b_1} = \vec{b} - \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}, b2=b+b.aa2a\vec{b_2} = \vec{b} + \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a} and

c1=cc.aa2ac.bb2b\vec{c_1} = \vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b}}{|\vec{b}|^2}\vec{b}, c2=cc.aa2ac.b1b12b1\vec{c_2} = \vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}\vec{b_1}, c3=cc.aa2ac.b2b22b2\vec{c_3} = \vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b_2}}{|\vec{b_2}|^2}\vec{b_2}, c4=ac.aa2a\vec{c_4} = \vec{a} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a}

Then which of the following is a set of mutually orthogonal vectors?

A

{a,b1,c1\vec{a}, \vec{b_1}, \vec{c_1}}

B

{a,b1,c2\vec{a}, \vec{b_1}, \vec{c_2}}

C

{a,b2,c3\vec{a}, \vec{b_2}, \vec{c_3}}

D

{a,b2,c4\vec{a}, \vec{b_2}, \vec{c_4}}

Answer

{a,b1,c2\vec{a}, \vec{b_1}, \vec{c_2}}

Explanation

Solution

The problem asks us to identify a set of mutually orthogonal vectors from the given options. We are given three non-zero, non-coplanar vectors a\vec{a}, b\vec{b}, c\vec{c} and several derived vectors.

Let's analyze the definitions of the derived vectors:

  1. b1=bb.aa2a\vec{b_1} = \vec{b} - \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}

    This expression represents the component of b\vec{b} that is orthogonal to a\vec{a}. This is a standard step in the Gram-Schmidt orthogonalization process. To verify orthogonality: b1.a=(bb.aa2a).a=b.ab.aa2(a.a)=b.ab.a=0\vec{b_1} . \vec{a} = \left(\vec{b} - \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}\right) . \vec{a} = \vec{b}.\vec{a} - \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}(\vec{a}.\vec{a}) = \vec{b}.\vec{a} - \vec{b}.\vec{a} = 0. So, a\vec{a} and b1\vec{b_1} are orthogonal.

  2. b2=b+b.aa2a\vec{b_2} = \vec{b} + \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}

    Let's check the dot product with a\vec{a}: b2.a=(b+b.aa2a).a=b.a+b.aa2(a.a)=b.a+b.a=2(b.a)\vec{b_2} . \vec{a} = \left(\vec{b} + \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}\right) . \vec{a} = \vec{b}.\vec{a} + \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}(\vec{a}.\vec{a}) = \vec{b}.\vec{a} + \vec{b}.\vec{a} = 2(\vec{b}.\vec{a}). Since a\vec{a} and b\vec{b} are general non-zero vectors, b.a\vec{b}.\vec{a} is generally not zero. Therefore, a\vec{a} and b2\vec{b_2} are generally not orthogonal. This immediately rules out options (C) and (D).

Now let's examine the remaining options, (A) and (B). Both include a\vec{a} and b1\vec{b_1}, which we've established are orthogonal. We need to check the third vector in each set.

Option (A): {a,b1,c1}\{\vec{a}, \vec{b_1}, \vec{c_1}\} c1=cc.aa2ac.bb2b\vec{c_1} = \vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b}}{|\vec{b}|^2}\vec{b} Let's check c1.a\vec{c_1} . \vec{a}: c1.a=(cc.aa2ac.bb2b).a\vec{c_1} . \vec{a} = \left(\vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b}}{|\vec{b}|^2}\vec{b}\right) . \vec{a} =c.ac.aa2(a.a)c.bb2(b.a)= \vec{c}.\vec{a} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}(\vec{a}.\vec{a}) - \frac{\vec{c}.\vec{b}}{|\vec{b}|^2}(\vec{b}.\vec{a}) =c.ac.a(c.b)(b.a)b2= \vec{c}.\vec{a} - \vec{c}.\vec{a} - \frac{(\vec{c}.\vec{b})(\vec{b}.\vec{a})}{|\vec{b}|^2} =(c.b)(b.a)b2= - \frac{(\vec{c}.\vec{b})(\vec{b}.\vec{a})}{|\vec{b}|^2}. For this to be zero, either c.b=0\vec{c}.\vec{b}=0 or b.a=0\vec{b}.\vec{a}=0. These conditions are not generally true for arbitrary non-zero, non-coplanar vectors. Thus, option (A) is generally not a set of mutually orthogonal vectors.

Option (B): {a,b1,c2}\{\vec{a}, \vec{b_1}, \vec{c_2}\} We already know ab1\vec{a} \perp \vec{b_1}. Now let's check c2\vec{c_2}: c2=cc.aa2ac.b1b12b1\vec{c_2} = \vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}\vec{b_1} This expression for c2\vec{c_2} is precisely the Gram-Schmidt orthogonalization step to make c\vec{c} orthogonal to both a\vec{a} and b1\vec{b_1}. Let's verify:

  1. c2.a\vec{c_2} . \vec{a}: c2.a=(cc.aa2ac.b1b12b1).a\vec{c_2} . \vec{a} = \left(\vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}\vec{b_1}\right) . \vec{a} =c.ac.aa2(a.a)c.b1b12(b1.a)= \vec{c}.\vec{a} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}(\vec{a}.\vec{a}) - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}(\vec{b_1}.\vec{a}) Since b1.a=0\vec{b_1}.\vec{a} = 0: =c.ac.ac.b1b12(0)=0= \vec{c}.\vec{a} - \vec{c}.\vec{a} - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}(0) = 0. So, ac2\vec{a} \perp \vec{c_2}.

  2. c2.b1\vec{c_2} . \vec{b_1}: c2.b1=(cc.aa2ac.b1b12b1).b1\vec{c_2} . \vec{b_1} = \left(\vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}\vec{b_1}\right) . \vec{b_1} =c.b1c.aa2(a.b1)c.b1b12(b1.b1)= \vec{c}.\vec{b_1} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}(\vec{a}.\vec{b_1}) - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}(\vec{b_1}.\vec{b_1}) Since a.b1=0\vec{a}.\vec{b_1} = 0: =c.b1c.aa2(0)c.b1b12b12= \vec{c}.\vec{b_1} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}(0) - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}|\vec{b_1}|^2 =c.b1c.b1=0= \vec{c}.\vec{b_1} - \vec{c}.\vec{b_1} = 0. So, b1c2\vec{b_1} \perp \vec{c_2}.

Since ab1\vec{a} \perp \vec{b_1}, ac2\vec{a} \perp \vec{c_2}, and b1c2\vec{b_1} \perp \vec{c_2}, the set {a,b1,c2}\{\vec{a}, \vec{b_1}, \vec{c_2}\} is a set of mutually orthogonal vectors. This is the result of applying the Gram-Schmidt orthogonalization process to the vectors a,b,c\vec{a}, \vec{b}, \vec{c}. The condition that a,b,c\vec{a}, \vec{b}, \vec{c} are non-zero and non-coplanar ensures that b1\vec{b_1} and c2\vec{c_2} are also non-zero vectors.

The final answer is B\boxed{\text{B}}.

Explanation of the solution:

The problem asks for a set of mutually orthogonal vectors. This means the dot product of any two distinct vectors in the set must be zero.

  1. Analyze b1\vec{b_1} and b2\vec{b_2} with respect to a\vec{a}:

    • b1=bb.aa2a\vec{b_1} = \vec{b} - \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}. Calculating b1.a=(bb.aa2a).a=b.ab.aa2a2=b.ab.a=0\vec{b_1}.\vec{a} = (\vec{b} - \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}).\vec{a} = \vec{b}.\vec{a} - \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}|\vec{a}|^2 = \vec{b}.\vec{a} - \vec{b}.\vec{a} = 0. Thus, ab1\vec{a} \perp \vec{b_1}.
    • b2=b+b.aa2a\vec{b_2} = \vec{b} + \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}. Calculating b2.a=(b+b.aa2a).a=b.a+b.aa2a2=b.a+b.a=2(b.a)\vec{b_2}.\vec{a} = (\vec{b} + \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}).\vec{a} = \vec{b}.\vec{a} + \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}|\vec{a}|^2 = \vec{b}.\vec{a} + \vec{b}.\vec{a} = 2(\vec{b}.\vec{a}). This is generally not zero. Therefore, options (C) and (D) are incorrect as they include a\vec{a} and b2\vec{b_2}.
  2. Analyze c1\vec{c_1} with respect to a\vec{a} (for option A):

    • c1=cc.aa2ac.bb2b\vec{c_1} = \vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b}}{|\vec{b}|^2}\vec{b}. Calculating c1.a=(cc.aa2ac.bb2b).a=c.ac.ac.bb2(b.a)=(c.b)(b.a)b2\vec{c_1}.\vec{a} = (\vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b}}{|\vec{b}|^2}\vec{b}).\vec{a} = \vec{c}.\vec{a} - \vec{c}.\vec{a} - \frac{\vec{c}.\vec{b}}{|\vec{b}|^2}(\vec{b}.\vec{a}) = -\frac{(\vec{c}.\vec{b})(\vec{b}.\vec{a})}{|\vec{b}|^2}. This is generally not zero. Therefore, option (A) is incorrect.
  3. Analyze c2\vec{c_2} with respect to a\vec{a} and b1\vec{b_1} (for option B):

    • c2=cc.aa2ac.b1b12b1\vec{c_2} = \vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}\vec{b_1}.
    • c2.a=(cc.aa2ac.b1b12b1).a=c.ac.ac.b1b12(b1.a)\vec{c_2}.\vec{a} = (\vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}\vec{b_1}).\vec{a} = \vec{c}.\vec{a} - \vec{c}.\vec{a} - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}(\vec{b_1}.\vec{a}). Since b1.a=0\vec{b_1}.\vec{a}=0, this simplifies to 00. Thus, ac2\vec{a} \perp \vec{c_2}.
    • c2.b1=(cc.aa2ac.b1b12b1).b1=c.b1c.aa2(a.b1)c.b1b12b12\vec{c_2}.\vec{b_1} = (\vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}\vec{b_1}).\vec{b_1} = \vec{c}.\vec{b_1} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}(\vec{a}.\vec{b_1}) - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2}|\vec{b_1}|^2. Since a.b1=0\vec{a}.\vec{b_1}=0, this simplifies to c.b1c.b1=0\vec{c}.\vec{b_1} - \vec{c}.\vec{b_1} = 0. Thus, b1c2\vec{b_1} \perp \vec{c_2}.

Since ab1\vec{a} \perp \vec{b_1}, ac2\vec{a} \perp \vec{c_2}, and b1c2\vec{b_1} \perp \vec{c_2}, the set {a,b1,c2}\{\vec{a}, \vec{b_1}, \vec{c_2}\} is a set of mutually orthogonal vectors. This construction is exactly the Gram-Schmidt orthogonalization process.

The final answer is (B)\boxed{\text{(B)}}