Solveeit Logo

Question

Question: If the system of equations $2x-3y+5z=12$ $3x+y+\lambda z = \mu$ $x-7y+8z=17$ has infinite solutions ...

If the system of equations 2x3y+5z=122x-3y+5z=12 3x+y+λz=μ3x+y+\lambda z = \mu x7y+8z=17x-7y+8z=17 has infinite solutions then 2(λ+μ)2(\lambda + \mu), is divisible by

A

3

B

6

C

11

D

7

Answer

6

Explanation

Solution

The system of linear equations is given by:

  1. 2x3y+5z=122x-3y+5z=12
  2. 3x+y+λz=μ3x+y+\lambda z = \mu
  3. x7y+8z=17x-7y+8z=17

For a system of linear equations to have infinitely many solutions, two conditions must be met using Cramer's Rule:

  1. The determinant of the coefficient matrix, Δ\Delta, must be zero.
  2. The determinants Δx,Δy,Δz\Delta_x, \Delta_y, \Delta_z (obtained by replacing the respective column of coefficients with the constant terms) must also be zero.

Let's write the augmented matrix for the system:

M=(2351231λμ17817)M = \begin{pmatrix} 2 & -3 & 5 & | & 12 \\ 3 & 1 & \lambda & | & \mu \\ 1 & -7 & 8 & | & 17 \end{pmatrix}

We can use Gaussian elimination to find the conditions for infinite solutions.

Swap R1R_1 and R3R_3:

(1781731λμ23512)\begin{pmatrix} 1 & -7 & 8 & | & 17 \\ 3 & 1 & \lambda & | & \mu \\ 2 & -3 & 5 & | & 12 \end{pmatrix}

Perform row operations R2R23R1R_2 \to R_2 - 3R_1 and R3R32R1R_3 \to R_3 - 2R_1:

(1781733(1)13(7)λ3(8)μ3(17)22(1)32(7)52(8)122(17))\begin{pmatrix} 1 & -7 & 8 & | & 17 \\ 3-3(1) & 1-3(-7) & \lambda-3(8) & | & \mu-3(17) \\ 2-2(1) & -3-2(-7) & 5-2(8) & | & 12-2(17) \end{pmatrix}

(1781701+21λ24μ5103+145161234)\begin{pmatrix} 1 & -7 & 8 & | & 17 \\ 0 & 1+21 & \lambda-24 & | & \mu-51 \\ 0 & -3+14 & 5-16 & | & 12-34 \end{pmatrix}

(17817022λ24μ510111122)\begin{pmatrix} 1 & -7 & 8 & | & 17 \\ 0 & 22 & \lambda-24 & | & \mu-51 \\ 0 & 11 & -11 & | & -22 \end{pmatrix}

Now, perform R2R22R3R_2 \to R_2 - 2R_3:

(178170222(11)(λ24)2(11)(μ51)2(22)0111122)\begin{pmatrix} 1 & -7 & 8 & | & 17 \\ 0 & 22-2(11) & (\lambda-24)-2(-11) & | & (\mu-51)-2(-22) \\ 0 & 11 & -11 & | & -22 \end{pmatrix}

(1781700λ24+22μ51+440111122)\begin{pmatrix} 1 & -7 & 8 & | & 17 \\ 0 & 0 & \lambda-24+22 & | & \mu-51+44 \\ 0 & 11 & -11 & | & -22 \end{pmatrix}

(1781700λ2μ70111122)\begin{pmatrix} 1 & -7 & 8 & | & 17 \\ 0 & 0 & \lambda-2 & | & \mu-7 \\ 0 & 11 & -11 & | & -22 \end{pmatrix}

For the system to have infinite solutions, the row (00λ2μ7)\begin{pmatrix} 0 & 0 & \lambda-2 & | & \mu-7 \end{pmatrix} must be a row of zeros. This means:

λ2=0    λ=2\lambda - 2 = 0 \implies \lambda = 2

μ7=0    μ=7\mu - 7 = 0 \implies \mu = 7

Now we need to calculate 2(λ+μ)2(\lambda + \mu):

2(λ+μ)=2(2+7)=2(9)=182(\lambda + \mu) = 2(2 + 7) = 2(9) = 18.

Finally, we check which of the given options divides 18:

(A) 3: 18÷3=618 \div 3 = 6. So, 18 is divisible by 3.

(B) 6: 18÷6=318 \div 6 = 3. So, 18 is divisible by 6.

(C) 11: 18 is not divisible by 11.

(D) 7: 18 is not divisible by 7.

Both options (A) and (B) are correct. However, since this is typically a single-choice question format, and 6 is a larger and more specific divisor of 18 than 3 (as divisibility by 6 implies divisibility by 3), 6 is generally considered the intended answer.

Core Solution:

The given system of equations is: 2x3y+5z=122x-3y+5z=12 3x+y+λz=μ3x+y+\lambda z = \mu x7y+8z=17x-7y+8z=17

Using Gaussian elimination on the augmented matrix:

(2351231λμ17817)\begin{pmatrix} 2 & -3 & 5 & | & 12 \\ 3 & 1 & \lambda & | & \mu \\ 1 & -7 & 8 & | & 17 \end{pmatrix}

Row operations lead to:

(17817011112200λ2μ7)\begin{pmatrix} 1 & -7 & 8 & | & 17 \\ 0 & 11 & -11 & | & -22 \\ 0 & 0 & \lambda-2 & | & \mu-7 \end{pmatrix}

For infinite solutions, the last row must be all zeros:

λ2=0    λ=2\lambda-2 = 0 \implies \lambda = 2

μ7=0    μ=7\mu-7 = 0 \implies \mu = 7

Calculate 2(λ+μ)=2(2+7)=2(9)=182(\lambda + \mu) = 2(2 + 7) = 2(9) = 18.

Check divisibility of 18 by the given options:

18 is divisible by 3 (18/3=618/3=6).

18 is divisible by 6 (18/6=318/6=3).

18 is not divisible by 11 or 7.

Both (A) and (B) are mathematically correct. In a single-choice context, the most specific or largest divisor is usually the intended answer.