Solveeit Logo

Question

Question: If the function $P[x=x] = \begin{cases} \frac{K.2^x}{x!}, x=0,1,2,3...... \\ 0 \text{ otherwise} \en...

If the function P[x=x]={K.2xx!,x=0,1,2,3......0 otherwiseP[x=x] = \begin{cases} \frac{K.2^x}{x!}, x=0,1,2,3...... \\ 0 \text{ otherwise} \end{cases} forms p.m.f. then value of K is

Answer

1e2\frac{1}{e^2}

Explanation

Solution

Given the p.m.f.

P[X=x]=K2xx!for x=0,1,2,P[X=x] = \frac{K \cdot 2^x}{x!} \quad \text{for } x=0,1,2,\dots

For a function to be a p.m.f., the sum over all values must equal 1:

x=0K2xx!=Kx=02xx!=Ke2=1.\sum_{x=0}^{\infty} \frac{K \cdot 2^x}{x!} = K \sum_{x=0}^{\infty} \frac{2^x}{x!} = K \cdot e^2 = 1.

Thus,

K=1e2.K = \frac{1}{e^2}.