Question
Question: If the function $P[x=x] = \begin{cases} \frac{K.2^x}{x!}, x=0,1,2,3...... \\ 0 \text{ otherwise} \en...
If the function P[x=x]={x!K.2x,x=0,1,2,3......0 otherwise forms p.m.f. then value of K is

Answer
e21
Explanation
Solution
Given the p.m.f.
P[X=x]=x!K⋅2xfor x=0,1,2,…For a function to be a p.m.f., the sum over all values must equal 1:
x=0∑∞x!K⋅2x=Kx=0∑∞x!2x=K⋅e2=1.Thus,
K=e21.