Solveeit Logo

Question

Question: If the function \(P [x = x] =\) \[ \begin{cases} \frac{K \cdot 2^x}{x!}, x = 0,1,2,3...... \\ 0 \te...

If the function P[x=x]=P [x = x] =

{K2xx!,x=0,1,2,3......0 otherwise\begin{cases} \frac{K \cdot 2^x}{x!}, x = 0,1,2,3...... \\ 0 \text{ otherwise} \end{cases}

forms p.m.f. then value of K is

Answer

K=e2K = e^{-2}

Explanation

Solution

For P[X=x]=K2xx!P[X = x] = \frac{K \cdot 2^x}{x!} to be a p.m.f., we require

x=0K2xx!=1.\sum_{x=0}^{\infty} \frac{K \cdot 2^x}{x!} = 1.

Since

x=02xx!=e2,\sum_{x=0}^{\infty} \frac{2^x}{x!} = e^2,

we have

Ke2=1K=e2.K \cdot e^2 = 1 \quad \Rightarrow \quad K = e^{-2}.

Core Explanation:

  • Sum over all xx gives Ke2=1K \cdot e^2 = 1.
  • Solve to obtain K=e2K = e^{-2}.