Question
Question: If the function \(P [x = x] =\) \[ \begin{cases} \frac{K \cdot 2^x}{x!}, x = 0,1,2,3...... \\ 0 \te...
If the function P[x=x]=
{x!K⋅2x,x=0,1,2,3......0 otherwiseforms p.m.f. then value of K is

Answer
K=e−2
Explanation
Solution
For P[X=x]=x!K⋅2x to be a p.m.f., we require
x=0∑∞x!K⋅2x=1.Since
x=0∑∞x!2x=e2,we have
K⋅e2=1⇒K=e−2.Core Explanation:
- Sum over all x gives K⋅e2=1.
- Solve to obtain K=e−2.