Question
Question: If $\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} [\frac{mn}{3^n}(\frac{1}{3^m}-\frac{n}{n\cdot3^m+m\cdot3^...
If ∑m=1∞∑n=1∞[3nmn(3m1−n⋅3m+m⋅3nn)]=qp (where p and q are relatively prime), then q – 3p is

5
Solution
Let the given sum be S.
S=∑m=1∞∑n=1∞[3nmn(3m1−n⋅3m+m⋅3nn)]
Let the term inside the summation be am,n.
am,n=3nmn(3m1−n⋅3m+m⋅3nn)
am,n=3nmn⋅3m1−3nmn⋅n⋅3m+m⋅3nn
am,n=3m+nmn−3n(n⋅3m+m⋅3n)mn2
The sum is S=∑m=1∞∑n=1∞am,n.
Since the summation is over all positive integers m and n, the sum is symmetric with respect to swapping m and n.
Let's consider the term an,m obtained by swapping m and n in am,n:
an,m=3mnm(3n1−m⋅3n+n⋅3mm)
an,m=3mnm⋅3n1−3mnm⋅m⋅3n+n⋅3mm
an,m=3m+nmn−3m(m⋅3n+n⋅3m)m2n
The sum S can also be written as ∑n=1∞∑m=1∞am,n. By swapping the summation indices, we get ∑m=1∞∑n=1∞an,m.
So, S=∑m=1∞∑n=1∞an,m.
Consider the sum of am,n and an,m:
am,n+an,m=(3m+nmn−3n(n⋅3m+m⋅3n)mn2)+(3m+nmn−3m(m⋅3n+n⋅3m)m2n)
am,n+an,m=3m+n2mn−(3n(n⋅3m+m⋅3n)mn2+3m(n⋅3m+m⋅3n)m2n)
To combine the terms in the parenthesis, find a common denominator: 3m3n(n⋅3m+m⋅3n)=3m+n(n⋅3m+m⋅3n).
3n(n⋅3m+m⋅3n)mn2+3m(n⋅3m+m⋅3n)m2n=3m3n(n⋅3m+m⋅3n)mn2⋅3m+m2n⋅3n
=3m+n(n⋅3m+m⋅3n)mn(n⋅3m+m⋅3n)
=3m+nmn
So, am,n+an,m=3m+n2mn−3m+nmn=3m+nmn.
Now sum am,n+an,m over all m,n≥1:
∑m=1∞∑n=1∞(am,n+an,m)=∑m=1∞∑n=1∞3m+nmn
The left side is ∑m=1∞∑n=1∞am,n+∑m=1∞∑n=1∞an,m=S+S=2S.
The right side is ∑m=1∞∑n=1∞(3mm)(3nn).
This is a product of two independent sums:
∑m=1∞∑n=1∞3m+nmn=(∑m=1∞3mm)(∑n=1∞3nn).
We use the formula for the sum of an arithmetic-geometric series ∑k=1∞kxk=(1−x)2x for ∣x∣<1.
For x=1/3, ∑k=1∞k(31)k=(1−1/3)21/3=(2/3)21/3=4/91/3=31⋅49=43.
So, ∑m=1∞3mm=43 and ∑n=1∞3nn=43.
The right side of the equation is (43)(43)=169.
So, 2S=169.
S=329.
The problem states that the sum is qp where p and q are relatively prime.
We have S=329.
Here p=9 and q=32.
To check if they are relatively prime, find their prime factors.
9=32
32=25
Since they have no common prime factors, 9 and 32 are relatively prime.
The question asks for the value of q−3p.
q−3p=32−3(9)=32−27=5.