Solveeit Logo

Question

Question: If $\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} [\frac{mn}{3^n}(\frac{1}{3^m}-\frac{n}{n\cdot3^m+m\cdot3^...

If m=1n=1[mn3n(13mnn3m+m3n)]=pq\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} [\frac{mn}{3^n}(\frac{1}{3^m}-\frac{n}{n\cdot3^m+m\cdot3^n})]=\frac{p}{q} (where p and q are relatively prime), then q – 3p is

Answer

5

Explanation

Solution

Let the given sum be SS.

S=m=1n=1[mn3n(13mnn3m+m3n)]S = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left[\frac{mn}{3^n}\left(\frac{1}{3^m}-\frac{n}{n\cdot3^m+m\cdot3^n}\right)\right]

Let the term inside the summation be am,na_{m,n}.

am,n=mn3n(13mnn3m+m3n)a_{m,n} = \frac{mn}{3^n}\left(\frac{1}{3^m}-\frac{n}{n\cdot3^m+m\cdot3^n}\right)

am,n=mn3n13mmn3nnn3m+m3na_{m,n} = \frac{mn}{3^n} \cdot \frac{1}{3^m} - \frac{mn}{3^n} \cdot \frac{n}{n\cdot3^m+m\cdot3^n}

am,n=mn3m+nmn23n(n3m+m3n)a_{m,n} = \frac{mn}{3^{m+n}} - \frac{mn^2}{3^n(n\cdot3^m+m\cdot3^n)}

The sum is S=m=1n=1am,nS = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} a_{m,n}.

Since the summation is over all positive integers mm and nn, the sum is symmetric with respect to swapping mm and nn.

Let's consider the term an,ma_{n,m} obtained by swapping mm and nn in am,na_{m,n}:

an,m=nm3m(13nmm3n+n3m)a_{n,m} = \frac{nm}{3^m}\left(\frac{1}{3^n}-\frac{m}{m\cdot3^n+n\cdot3^m}\right)

an,m=nm3m13nnm3mmm3n+n3ma_{n,m} = \frac{nm}{3^m} \cdot \frac{1}{3^n} - \frac{nm}{3^m} \cdot \frac{m}{m\cdot3^n+n\cdot3^m}

an,m=mn3m+nm2n3m(m3n+n3m)a_{n,m} = \frac{mn}{3^{m+n}} - \frac{m^2n}{3^m(m\cdot3^n+n\cdot3^m)}

The sum SS can also be written as n=1m=1am,n\sum_{n=1}^{\infty}\sum_{m=1}^{\infty} a_{m,n}. By swapping the summation indices, we get m=1n=1an,m\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} a_{n,m}.

So, S=m=1n=1an,mS = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} a_{n,m}.

Consider the sum of am,na_{m,n} and an,ma_{n,m}:

am,n+an,m=(mn3m+nmn23n(n3m+m3n))+(mn3m+nm2n3m(m3n+n3m))a_{m,n} + a_{n,m} = \left(\frac{mn}{3^{m+n}} - \frac{mn^2}{3^n(n\cdot3^m+m\cdot3^n)}\right) + \left(\frac{mn}{3^{m+n}} - \frac{m^2n}{3^m(m\cdot3^n+n\cdot3^m)}\right)

am,n+an,m=2mn3m+n(mn23n(n3m+m3n)+m2n3m(n3m+m3n))a_{m,n} + a_{n,m} = \frac{2mn}{3^{m+n}} - \left(\frac{mn^2}{3^n(n\cdot3^m+m\cdot3^n)} + \frac{m^2n}{3^m(n\cdot3^m+m\cdot3^n)}\right)

To combine the terms in the parenthesis, find a common denominator: 3m3n(n3m+m3n)=3m+n(n3m+m3n)3^m 3^n (n\cdot3^m+m\cdot3^n) = 3^{m+n}(n\cdot3^m+m\cdot3^n).

mn23n(n3m+m3n)+m2n3m(n3m+m3n)=mn23m+m2n3n3m3n(n3m+m3n)\frac{mn^2}{3^n(n\cdot3^m+m\cdot3^n)} + \frac{m^2n}{3^m(n\cdot3^m+m\cdot3^n)} = \frac{mn^2 \cdot 3^m + m^2n \cdot 3^n}{3^m 3^n (n\cdot3^m+m\cdot3^n)}

=mn(n3m+m3n)3m+n(n3m+m3n)= \frac{mn(n \cdot 3^m + m \cdot 3^n)}{3^{m+n}(n\cdot3^m+m\cdot3^n)}

=mn3m+n= \frac{mn}{3^{m+n}}

So, am,n+an,m=2mn3m+nmn3m+n=mn3m+na_{m,n} + a_{n,m} = \frac{2mn}{3^{m+n}} - \frac{mn}{3^{m+n}} = \frac{mn}{3^{m+n}}.

Now sum am,n+an,ma_{m,n} + a_{n,m} over all m,n1m, n \ge 1:

m=1n=1(am,n+an,m)=m=1n=1mn3m+n\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} (a_{m,n} + a_{n,m}) = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \frac{mn}{3^{m+n}}

The left side is m=1n=1am,n+m=1n=1an,m=S+S=2S\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} a_{m,n} + \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} a_{n,m} = S + S = 2S.

The right side is m=1n=1(m3m)(n3n)\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left(\frac{m}{3^m}\right)\left(\frac{n}{3^n}\right).

This is a product of two independent sums:

m=1n=1mn3m+n=(m=1m3m)(n=1n3n)\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \frac{mn}{3^{m+n}} = \left(\sum_{m=1}^{\infty} \frac{m}{3^m}\right) \left(\sum_{n=1}^{\infty} \frac{n}{3^n}\right).

We use the formula for the sum of an arithmetic-geometric series k=1kxk=x(1x)2\sum_{k=1}^{\infty} kx^k = \frac{x}{(1-x)^2} for x<1|x|<1.

For x=1/3x = 1/3, k=1k(13)k=1/3(11/3)2=1/3(2/3)2=1/34/9=1394=34\sum_{k=1}^{\infty} k\left(\frac{1}{3}\right)^k = \frac{1/3}{(1-1/3)^2} = \frac{1/3}{(2/3)^2} = \frac{1/3}{4/9} = \frac{1}{3} \cdot \frac{9}{4} = \frac{3}{4}.

So, m=1m3m=34\sum_{m=1}^{\infty} \frac{m}{3^m} = \frac{3}{4} and n=1n3n=34\sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{3}{4}.

The right side of the equation is (34)(34)=916\left(\frac{3}{4}\right)\left(\frac{3}{4}\right) = \frac{9}{16}.

So, 2S=9162S = \frac{9}{16}.

S=932S = \frac{9}{32}.

The problem states that the sum is pq\frac{p}{q} where pp and qq are relatively prime.

We have S=932S = \frac{9}{32}.

Here p=9p=9 and q=32q=32.

To check if they are relatively prime, find their prime factors.

9=329 = 3^2

32=2532 = 2^5

Since they have no common prime factors, 9 and 32 are relatively prime.

The question asks for the value of q3pq - 3p.

q3p=323(9)=3227=5q - 3p = 32 - 3(9) = 32 - 27 = 5.