Solveeit Logo

Question

Question: If $I_{m,n} = \int cos^m x cos nx dx$, then show that: $I_{m,n} = \frac{cos^m x sin nx}{m+n} + \frac...

If Im,n=cosmxcosnxdxI_{m,n} = \int cos^m x cos nx dx, then show that: Im,n=cosmxsinnxm+n+mm+nIm1,n1I_{m,n} = \frac{cos^m x sin nx}{m+n} + \frac{m}{m+n}I_{m-1, n-1}

Answer

cosmxsinnxm+n+mm+nIm1,n1\frac{cos^m x sin nx}{m+n} + \frac{m}{m+n}I_{m-1, n-1}

Explanation

Solution

To derive the reduction formula for Im,n=cosmxcosnxdxI_{m,n} = \int \cos^m x \cos nx \, dx, we use integration by parts.

Let u=cosmxu = \cos^m x and dv=cosnxdxdv = \cos nx \, dx. Then, we find dudu and vv: du=mcosm1x(sinx)dx=mcosm1xsinxdxdu = m \cos^{m-1} x (-\sin x) \, dx = -m \cos^{m-1} x \sin x \, dx v=cosnxdx=sinnxnv = \int \cos nx \, dx = \frac{\sin nx}{n}

Applying the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du: Im,n=cosmx(sinnxn)(sinnxn)(mcosm1xsinx)dxI_{m,n} = \cos^m x \left(\frac{\sin nx}{n}\right) - \int \left(\frac{\sin nx}{n}\right) (-m \cos^{m-1} x \sin x) \, dx Im,n=cosmxsinnxn+mncosm1xsinxsinnxdxI_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} \int \cos^{m-1} x \sin x \sin nx \, dx

Now, we need to simplify the integral term cosm1xsinxsinnxdx\int \cos^{m-1} x \sin x \sin nx \, dx. We use the trigonometric identity: cos(AB)=cosAcosB+sinAsinB\cos(A-B) = \cos A \cos B + \sin A \sin B. Let A=nxA = nx and B=xB = x. Then cos(nxx)=cosnxcosx+sinnxsinx\cos(nx-x) = \cos nx \cos x + \sin nx \sin x. Rearranging this to find sinnxsinx\sin nx \sin x: sinnxsinx=cos(n1)xcosnxcosx\sin nx \sin x = \cos(n-1)x - \cos nx \cos x

Substitute this identity into the integral: cosm1xsinxsinnxdx=cosm1x(cos(n1)xcosnxcosx)dx\int \cos^{m-1} x \sin x \sin nx \, dx = \int \cos^{m-1} x (\cos(n-1)x - \cos nx \cos x) \, dx =cosm1xcos(n1)xdxcosm1xcosnxcosxdx= \int \cos^{m-1} x \cos(n-1)x \, dx - \int \cos^{m-1} x \cos nx \cos x \, dx The first integral is Im1,n1I_{m-1, n-1}. The second integral is cosmxcosnxdx\int \cos^m x \cos nx \, dx, which is Im,nI_{m,n}. So, cosm1xsinxsinnxdx=Im1,n1Im,n\int \cos^{m-1} x \sin x \sin nx \, dx = I_{m-1, n-1} - I_{m,n}.

Substitute this back into the expression for Im,nI_{m,n}: Im,n=cosmxsinnxn+mn(Im1,n1Im,n)I_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} (I_{m-1, n-1} - I_{m,n}) Im,n=cosmxsinnxn+mnIm1,n1mnIm,nI_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} I_{m-1, n-1} - \frac{m}{n} I_{m,n}

Now, collect the Im,nI_{m,n} terms on the left side: Im,n+mnIm,n=cosmxsinnxn+mnIm1,n1I_{m,n} + \frac{m}{n} I_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} I_{m-1, n-1} Im,n(1+mn)=cosmxsinnxn+mnIm1,n1I_{m,n} \left(1 + \frac{m}{n}\right) = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} I_{m-1, n-1} Im,n(n+mn)=cosmxsinnxn+mnIm1,n1I_{m,n} \left(\frac{n+m}{n}\right) = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} I_{m-1, n-1}

Finally, multiply both sides by nm+n\frac{n}{m+n} to isolate Im,nI_{m,n}: Im,n=nm+n(cosmxsinnxn+mnIm1,n1)I_{m,n} = \frac{n}{m+n} \left( \frac{\cos^m x \sin nx}{n} + \frac{m}{n} I_{m-1, n-1} \right) Im,n=cosmxsinnxm+n+mm+nIm1,n1I_{m,n} = \frac{\cos^m x \sin nx}{m+n} + \frac{m}{m+n} I_{m-1, n-1}

This completes the proof of the reduction formula.