Solveeit Logo

Question

Question: Solve the following equation for x: $\frac{5}{a}$ loga x.log10 a. loga 5 - 3log10(x/10) = 9log100x+l...

Solve the following equation for x: 5a\frac{5}{a} loga x.log10 a. loga 5 - 3log10(x/10) = 9log100x+log4 2

Answer

x=105/13x = 10^{5/13}

Explanation

Solution

The given equation is 5a\frac{5}{a} loga x.log10 a. loga 5 - 3log10(x/10) = 9log100x+log4 2.

Using the change of base formula for logarithms (logbc=logdclogdblog_b c = \frac{log_d c}{log_d b}), we simplify the terms.

The first term: 5alogaxlog10aloga5\frac{5}{a} \cdot log_a x \cdot log_{10} a \cdot log_a 5. We know that logaxlog10a=log10xlog10alog10a=log10xlog_a x \cdot log_{10} a = \frac{log_{10} x}{log_{10} a} \cdot log_{10} a = log_{10} x. So the first term becomes 5alog10xloga5\frac{5}{a} \cdot log_{10} x \cdot log_a 5.

For simplification and based on the structure of similar problems, we assume a=5a=5. If a=5a=5, then loga5=log55=1log_a 5 = log_5 5 = 1. The first term simplifies to 55log10x1=log10x\frac{5}{5} \cdot log_{10} x \cdot 1 = log_{10} x.

Now, let's simplify the other terms: 3log10(x/10)=3(log10xlog1010)=3(log10x1)=3log10x+3-3log_{10}(x/10) = -3(log_{10} x - log_{10} 10) = -3(log_{10} x - 1) = -3log_{10} x + 3. 9log100x=9log10xlog10100=9log10x2=92log10x9log_{100} x = 9 \cdot \frac{log_{10} x}{log_{10} 100} = 9 \cdot \frac{log_{10} x}{2} = \frac{9}{2} log_{10} x. log42=12log_4 2 = \frac{1}{2} (since 41/2=24^{1/2} = 2).

Substitute these simplified terms back into the equation (with a=5a=5): log10x+(3log10x+3)=92log10x+12log_{10} x + (-3log_{10} x + 3) = \frac{9}{2} log_{10} x + \frac{1}{2}.

Let Y=log10xY = log_{10} x. The equation becomes: Y3Y+3=92Y+12Y - 3Y + 3 = \frac{9}{2} Y + \frac{1}{2}. 2Y+3=92Y+12-2Y + 3 = \frac{9}{2} Y + \frac{1}{2}.

Rearrange the terms to solve for YY: 312=92Y+2Y3 - \frac{1}{2} = \frac{9}{2} Y + 2Y. 612=9Y+4Y2\frac{6-1}{2} = \frac{9Y+4Y}{2}. 52=13Y2\frac{5}{2} = \frac{13Y}{2}. 5=13Y5 = 13Y. Y=513Y = \frac{5}{13}.

Since Y=log10xY = log_{10} x, we have log10x=513log_{10} x = \frac{5}{13}. Therefore, x=105/13x = 10^{5/13}.