Solveeit Logo

Question

Question: Evaluate the integral $$ \int_{0}^{\infty} \int_{0}^{\infty} \frac{dx\,dy}{(1+x^2+y^2)^2} $$...

Evaluate the integral 00dxdy(1+x2+y2)2\int_{0}^{\infty} \int_{0}^{\infty} \frac{dx\,dy}{(1+x^2+y^2)^2}

Answer

π4\frac{\pi}{4}

Explanation

Solution

The integral is transformed into polar coordinates, where x=rcosθx=r\cos\theta, y=rsinθy=r\sin\theta, and dxdy=rdrdθdx\,dy=r\,dr\,d\theta. The first quadrant (x0,y0x\ge0, y\ge0) corresponds to r[0,)r\in[0,\infty) and θ[0,π/2]\theta\in[0,\pi/2]. The integral becomes 0π/20rdrdθ(1+r2)2\int_{0}^{\pi/2} \int_{0}^{\infty} \frac{r\,dr\,d\theta}{(1+r^2)^2}. This is separated into an angular integral (0π/2dθ=π/2\int_{0}^{\pi/2} d\theta = \pi/2) and a radial integral (0rdr(1+r2)2\int_{0}^{\infty} \frac{r\,dr}{(1+r^2)^2}). Using the substitution u=1+r2u=1+r^2 for the radial integral, we get 121u2du=12\frac{1}{2}\int_{1}^{\infty} u^{-2}du = \frac{1}{2}. The final result is the product of these two values: (π/2)×(1/2)=π/4(\pi/2) \times (1/2) = \pi/4.