Solveeit Logo

Question

Question: Consider the polynomial $P(x) = \prod_{k=0}^{10} (x^{2^k} + 2^k) = (x+1)(x^2+2)(x^4+4)....(x^{1024}+...

Consider the polynomial P(x)=k=010(x2k+2k)=(x+1)(x2+2)(x4+4)....(x1024+1024)P(x) = \prod_{k=0}^{10} (x^{2^k} + 2^k) = (x+1)(x^2+2)(x^4+4)....(x^{1024}+1024).

The coefficient of x2016x^{2016} is 4n4^n, then value of n is

Answer

5

Explanation

Solution

We have:

P(x)=k=010(x2k+2k)P(x)=\prod_{k=0}^{10} (x^{2^k}+2^k)

The maximum power of xx is:

k=0102k=2047.\sum_{k=0}^{10} 2^k = 2047.

To get x2016x^{2016}, we must miss an exponent sum of:

20472016=31.2047-2016 = 31.

Express 31 in binary:

31=1+2+4+8+16=20+21+22+23+24.31 = 1+2+4+8+16 = 2^0+2^1+2^2+2^3+2^4.

Thus, for k=0,1,2,3,4k=0,1,2,3,4 we choose the constant term 2k2^k and for k=5,6,,10k=5,6,\ldots,10 we choose x2kx^{2^k}.

The coefficient becomes:

2021222324=2(0+1+2+3+4)=210=1024.2^0 \cdot 2^1 \cdot 2^2 \cdot 2^3 \cdot 2^4 = 2^{(0+1+2+3+4)} = 2^{10}=1024.

Given that the coefficient equals 4n4^n and since 4n=22n4^n = 2^{2n}, we have:

22n=2102n=10n=5.2^{2n} = 2^{10} \quad \Rightarrow \quad 2n=10 \quad \Rightarrow \quad n=5.