Solveeit Logo

Question

Mathematics Question on Conditional Probability

6 coins are tossed together 64 times. If throwing a head is considered as a success then the expected frequency of at least 3 successes is

A

64

B

21

C

32

D

42

Answer

42

Explanation

Solution

Here p=12.q=1q=112=12p=\frac{1}{2}. q=1-q=1-\frac{1}{2}=\frac{1}{2} n=6,N=64.n = 6, N = 64. Then p(r)=nCrprqnr=6Cr(12)r(12)6r=6Cr(12)6p\left(r\right)=^{n}C_{r}\,p^{r}\,q^{n-r}=^{6}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{6-r}=^{6}C_{r}\left(\frac{1}{2}\right)^{6} f(r)Np(r)=64.6Cr.164=6Cr\therefore f \left(r\right)-Np\left(r\right)=64. ^{6}C_{r}. \frac{1}{64}=^{6}C_{r} Now 36p(r)=p(3)+p(4)+p(5)+p(6)\displaystyle \sum_{3}^6 p(r)=p(3)+p(4)+p(5)+p(6) =(6C3+6C4+6C5+6C6)126=(266C06C16C2)126=\left(^{6}C_{3}+^{6}C_{4}+^{6}C_{5}+^{6}C_{6}\right) \frac{1}{2^{6}}=\left(2^{6}-^{6}C_{0}-^{6}C_{1}-^{6}C_{2}\right) \frac{1}{2^{6}} =(641615)126=4264=2132=\left(64-1-6-15\right) \frac{1}{2^{6}}=\frac{42}{64}=\frac{21}{32} f(r)r3=N\therefore f \left(r\right)_{r\ge3}=N 36P(B)=64\displaystyle \sum_{3}^6P(B)=64,2132=42\frac{21}{32}=42