Question
Question: $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} =$...
1aa21bb21cc2=

(a+b)(b+c)(c+a)
(a−b)(b−c)(c−a)
(a+b+c)
abc
(a - b) (b - c) (c - a)
Solution
The given determinant is a Vandermonde determinant. We can evaluate it by performing column operations.
Step 1: Perform column operations to introduce zeros.
Apply the operations C2→C2−C1 and C3→C3−C1:
D=1aa21−1b−ab2−a21−1c−ac2−a2=1aa20b−a(b−a)(b+a)0c−a(c−a)(c+a)
Step 2: Expand the determinant along the first row (R1).
Since the first row has two zeros, the expansion simplifies significantly:
D=1⋅b−a(b−a)(b+a)c−a(c−a)(c+a)
Step 3: Factor out common terms from the columns of the 2x2 determinant.
Notice that (b−a) is a common factor in the first column and (c−a) is a common factor in the second column of the 2x2 determinant.
D=(b−a)(c−a)1b+a1c+a
Step 4: Evaluate the remaining 2x2 determinant.
The determinant of a 2x2 matrix prqs is ps−qr.
D=(b−a)(c−a)[1⋅(c+a)−1⋅(b+a)]=(b−a)(c−a)[c+a−b−a]=(b−a)(c−a)[c−b]
Step 5: Rearrange the terms to match the given options.
The calculated result is (b−a)(c−a)(c−b). We can rewrite the terms in our result:
(b−a)=−(a−b) (c−b)=−(b−c)
Substitute these into the expression for D:
D=(−(a−b))(c−a)(−(b−c))=(−1)⋅(−1)⋅(a−b)(c−a)(b−c)=(a−b)(b−c)(c−a)
This matches option (b).