Solveeit Logo

Question

Question: $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} =$...

111abca2b2c2=\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} =

A

(a+b)(b+c)(c+a)(a + b) (b + c) (c + a)

B

(ab)(bc)(ca)(a - b) (b - c) (c - a)

C

(a+b+c)(a+b+c)

D

abcabc

Answer

(a - b) (b - c) (c - a)

Explanation

Solution

The given determinant is a Vandermonde determinant. We can evaluate it by performing column operations.

Step 1: Perform column operations to introduce zeros.

Apply the operations C2C2C1C_2 \rightarrow C_2 - C_1 and C3C3C1C_3 \rightarrow C_3 - C_1:

D=11111abacaa2b2a2c2a2=100abacaa2(ba)(b+a)(ca)(c+a)D = \begin{vmatrix} 1 & 1-1 & 1-1 \\ a & b-a & c-a \\ a^2 & b^2-a^2 & c^2-a^2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ a & b-a & c-a \\ a^2 & (b-a)(b+a) & (c-a)(c+a) \end{vmatrix}

Step 2: Expand the determinant along the first row (R1R_1).

Since the first row has two zeros, the expansion simplifies significantly:

D=1baca(ba)(b+a)(ca)(c+a)D = 1 \cdot \begin{vmatrix} b-a & c-a \\ (b-a)(b+a) & (c-a)(c+a) \end{vmatrix}

Step 3: Factor out common terms from the columns of the 2x2 determinant.

Notice that (ba)(b-a) is a common factor in the first column and (ca)(c-a) is a common factor in the second column of the 2x2 determinant.

D=(ba)(ca)11b+ac+aD = (b-a)(c-a) \begin{vmatrix} 1 & 1 \\ b+a & c+a \end{vmatrix}

Step 4: Evaluate the remaining 2x2 determinant.

The determinant of a 2x2 matrix pqrs\begin{vmatrix} p & q \\ r & s \end{vmatrix} is psqrps - qr.

D=(ba)(ca)[1(c+a)1(b+a)]=(ba)(ca)[c+aba]=(ba)(ca)[cb]D = (b-a)(c-a) [1 \cdot (c+a) - 1 \cdot (b+a)] = (b-a)(c-a) [c+a - b-a] = (b-a)(c-a) [c-b]

Step 5: Rearrange the terms to match the given options.

The calculated result is (ba)(ca)(cb)(b-a)(c-a)(c-b). We can rewrite the terms in our result:

(ba)=(ab)(b-a) = -(a-b) (cb)=(bc)(c-b) = -(b-c)

Substitute these into the expression for D:

D=((ab))(ca)((bc))=(1)(1)(ab)(ca)(bc)=(ab)(bc)(ca)D = (-(a-b)) (c-a) (-(b-c)) = (-1) \cdot (-1) \cdot (a-b)(c-a)(b-c) = (a-b)(b-c)(c-a)

This matches option (b).