Solveeit Logo

Question

Question: A U-shaped electromagnet shown in Figure is designed to lift a 400 kg mass (which includes the mass ...

A U-shaped electromagnet shown in Figure is designed to lift a 400 kg mass (which includes the mass of the keeper). The iron yoke (μr\mu_r = 3000) has a cross section of 40 cm2cm^2 or and mean length of 50 cm, and the air gaps are each 0.1 mm long. Neglecting the reluctance of the keeper, calculate the number of turns in the coil when the excitation current is 1 A.

Answer

324

Explanation

Solution

To calculate the number of turns in the coil, we need to determine the required magnetic field strength (B) to lift the given mass and then use the magnetic circuit analogy (Ampere's Law) to find the necessary magnetomotive force (MMF), from which the number of turns can be derived.

1. Convert all given parameters to SI units:

  • Mass to be lifted, M=400 kgM = 400 \text{ kg}
  • Relative permeability of iron yoke, μr=3000\mu_r = 3000
  • Cross-sectional area of yoke, A=40 cm2=40×(102)2 m2=40×104 m2=4×103 m2A = 40 \text{ cm}^2 = 40 \times (10^{-2})^2 \text{ m}^2 = 40 \times 10^{-4} \text{ m}^2 = 4 \times 10^{-3} \text{ m}^2
  • Mean length of iron yoke, lm=50 cm=0.5 ml_m = 50 \text{ cm} = 0.5 \text{ m}
  • Length of each air gap, lg=0.1 mm=0.1×103 m=1×104 ml_g = 0.1 \text{ mm} = 0.1 \times 10^{-3} \text{ m} = 1 \times 10^{-4} \text{ m}
  • Excitation current, I=1 AI = 1 \text{ A}
  • Permeability of free space, μ0=4π×107 H/m\mu_0 = 4\pi \times 10^{-7} \text{ H/m}
  • Acceleration due to gravity, g=9.8 m/s2g = 9.8 \text{ m/s}^2

2. Calculate the force required to lift the mass: The force required to lift the mass is equal to its weight. F=M×gF = M \times g F=400 kg×9.8 m/s2=3920 NF = 400 \text{ kg} \times 9.8 \text{ m/s}^2 = 3920 \text{ N}

3. Relate the magnetic force to the magnetic field (B) in the air gap: The magnetic force exerted by an electromagnet on a ferromagnetic material (keeper) is given by F=B2A2μ0F = \frac{B^2 A}{2\mu_0} for one pole. Since the U-shaped electromagnet has two poles acting on the keeper, the total force is the sum of forces from both poles. Ftotal=2×B2A2μ0=B2Aμ0F_{total} = 2 \times \frac{B^2 A}{2\mu_0} = \frac{B^2 A}{\mu_0} We need to find the magnetic field B: B2=Ftotalμ0AB^2 = \frac{F_{total} \mu_0}{A} B=Ftotalμ0AB = \sqrt{\frac{F_{total} \mu_0}{A}} Substitute the values: B=3920 N×4π×107 H/m4×103 m2B = \sqrt{\frac{3920 \text{ N} \times 4\pi \times 10^{-7} \text{ H/m}}{4 \times 10^{-3} \text{ m}^2}} B=3920×π×104B = \sqrt{3920 \times \pi \times 10^{-4}} B=3.92×π×101B = \sqrt{3.92 \times \pi \times 10^{-1}} B=1.2315B = \sqrt{1.2315} (approximately, using π3.14159\pi \approx 3.14159) B1.1097 TB \approx 1.1097 \text{ T}

4. Apply Ampere's Circuital Law (Magnetic Circuit Analogy) to find the number of turns (N): The total magnetomotive force (MMF), NINI, is the sum of the MMF drops across the iron yoke and the two air gaps. NI=Hmlm+2HglgNI = H_m l_m + 2 H_g l_g Where HmH_m is the magnetic field intensity in the iron yoke and HgH_g is the magnetic field intensity in the air gap. We know that B=μHB = \mu H, so H=B/μH = B/\mu. For the iron yoke, μm=μrμ0\mu_m = \mu_r \mu_0, so Hm=Bμrμ0H_m = \frac{B}{\mu_r \mu_0}. For the air gap, μg=μ0\mu_g = \mu_0, so Hg=Bμ0H_g = \frac{B}{\mu_0}. Substitute these into the MMF equation: NI=Bμrμ0lm+2Bμ0lgNI = \frac{B}{\mu_r \mu_0} l_m + 2 \frac{B}{\mu_0} l_g Factor out B/μ0B/\mu_0: NI=Bμ0(lmμr+2lg)NI = \frac{B}{\mu_0} \left( \frac{l_m}{\mu_r} + 2l_g \right) Now, substitute the known values: N×1 A=1.1097 T4π×107 H/m(0.5 m3000+2×1×104 m)N \times 1 \text{ A} = \frac{1.1097 \text{ T}}{4\pi \times 10^{-7} \text{ H/m}} \left( \frac{0.5 \text{ m}}{3000} + 2 \times 1 \times 10^{-4} \text{ m} \right) N=1.10974π×107(0.00016667+0.0002)N = \frac{1.1097}{4\pi \times 10^{-7}} \left( 0.00016667 + 0.0002 \right) N=1.109712.566×107(0.00036667)N = \frac{1.1097}{12.566 \times 10^{-7}} \left( 0.00036667 \right) N=(8.830×105)×(3.6667×104)N = (8.830 \times 10^5) \times (3.6667 \times 10^{-4}) N323.7N \approx 323.7

Rounding to the nearest whole number, the number of turns N324N \approx 324.