Solveeit Logo

Question

Question: A steel cylindrical rod of length $l$ and radius $r$ is suspended by its end from the ceiling. (a) F...

A steel cylindrical rod of length ll and radius rr is suspended by its end from the ceiling. (a) Find the elastic deformation energy U of the rod. (b) Define U in terms of tensile strain Δl/l\Delta l/l of the rod.

A

(a) U=12Y(πr2l)ϵ2U = \frac{1}{2} Y (\pi r^2 l) \epsilon^2, (b) U=12Y(πr2l)(Δll)2U = \frac{1}{2} Y (\pi r^2 l) \left(\frac{\Delta l}{l}\right)^2

B

(a) U=Y(πr2l)ϵ2U = Y (\pi r^2 l) \epsilon^2, (b) U=Y(πr2l)(Δll)2U = Y (\pi r^2 l) \left(\frac{\Delta l}{l}\right)^2

C

(a) U=12Y(πr2)ϵ2U = \frac{1}{2} Y (\pi r^2) \epsilon^2, (b) U=12Y(πr2)(Δll)2U = \frac{1}{2} Y (\pi r^2) \left(\frac{\Delta l}{l}\right)^2

D

(a) U=12Y(πr2l)ϵU = \frac{1}{2} Y (\pi r^2 l) \epsilon, (b) U=12Y(πr2l)(Δll)U = \frac{1}{2} Y (\pi r^2 l) \left(\frac{\Delta l}{l}\right)

Answer

(a) The elastic deformation energy UU of the rod is U=12Y(πr2l)ϵ2U = \frac{1}{2} Y (\pi r^2 l) \epsilon^2. (b) Defined in terms of tensile strain Δl/l\Delta l/l: U=12Y(πr2l)(Δll)2U = \frac{1}{2} Y (\pi r^2 l) \left(\frac{\Delta l}{l}\right)^2.

Explanation

Solution

  • Part (a): The elastic deformation energy UU of a rod is given by U=12YVϵ2U = \frac{1}{2} Y V \epsilon^2, where YY is Young's modulus, VV is the volume of the rod, and ϵ\epsilon is the tensile strain. The volume of the cylindrical rod is V=πr2lV = \pi r^2 l. Thus, U=12Y(πr2l)ϵ2U = \frac{1}{2} Y (\pi r^2 l) \epsilon^2.
  • Part (b): Tensile strain is defined as ϵ=Δl/l\epsilon = \Delta l/l. Substituting this into the formula from part (a) gives U=12Y(πr2l)(Δll)2U = \frac{1}{2} Y (\pi r^2 l) \left(\frac{\Delta l}{l}\right)^2.