Solveeit Logo

Question

Question: A metal sphere of radius 1 m is charged with $10^{-2}$ C in air. Its bulk modulus is $\frac{10^{11}}...

A metal sphere of radius 1 m is charged with 10210^{-2} C in air. Its bulk modulus is 10114π2Nm2\frac{10^{11}}{4\pi^2} \frac{N}{m^2}

The volume strain in the sphere is

A

10156ϵ0\frac{10^{-15}}{6\epsilon_0}

B

101516ϵ0\frac{10^{-15}}{16\epsilon_0}

C

10158ϵ0\frac{10^{-15}}{8\epsilon_0}

D

10152ϵ0\frac{10^{-15}}{2\epsilon_0}

Answer

10158ϵ0\frac{10^{-15}}{8\epsilon_0}

Explanation

Solution

Here's how to calculate the volume strain of the sphere:

  1. Electric Field at the Surface: For a charged sphere of radius R=1mR = 1 \, m and charge Q=102CQ = 10^{-2} \, C:

    E=Q4πϵ0R2=1024πϵ0.E = \frac{Q}{4\pi \epsilon_0 R^2} = \frac{10^{-2}}{4\pi \epsilon_0}.
  2. Electrostatic Pressure: The pressure due to the surface electric field (from Maxwell's stress tensor) is:

    P=12ϵ0E2=12ϵ0(Q4πϵ0R2)2=Q232π2ϵ0R4.P = \frac{1}{2} \epsilon_0 E^2 = \frac{1}{2}\epsilon_0 \left(\frac{Q}{4\pi \epsilon_0 R^2}\right)^2 = \frac{Q^2}{32\pi^2\epsilon_0 R^4}.

    For Q=102CQ = 10^{-2} \, C and R=1mR=1 \, m:

    P=10432π2ϵ0.P = \frac{10^{-4}}{32\pi^2 \epsilon_0}.
  3. Volume Strain: The volume strain (relative change in volume) produced by this pressure is given by:

    ΔVV=PK,\frac{\Delta V}{V} = \frac{P}{K},

    where the bulk modulus is

    K=10114π2Nm2.K = \frac{10^{11}}{4\pi^2} \, \frac{N}{m^2}.

    Thus,

    ΔVV=10432π2ϵ010114π2=10432π2ϵ04π21011=4×10432×1011ϵ0.\frac{\Delta V}{V} = \frac{\displaystyle \frac{10^{-4}}{32\pi^2 \epsilon_0}}{\displaystyle \frac{10^{11}}{4\pi^2}} = \frac{10^{-4}}{32\pi^2 \epsilon_0} \cdot \frac{4\pi^2}{10^{11}} = \frac{4 \times 10^{-4}}{32 \times 10^{11} \epsilon_0}.

    Simplifying, 432=18\frac{4}{32} = \frac{1}{8} and 104/1011=101510^{-4}/10^{11} = 10^{-15}, so we have:

    ΔVV=10158ϵ0.\frac{\Delta V}{V} = \frac{10^{-15}}{8\epsilon_0}.