Solveeit Logo

Question

Question: A magnet having magnetic moment $\overrightarrow{M}$ = (10$\hat{i}$) Am² is placed in a magnetic fie...

A magnet having magnetic moment M\overrightarrow{M} = (10i^\hat{i}) Am² is placed in a magnetic field B\overrightarrow{B} = (2i^\hat{i} + 3j^\hat{j}) T. The torque acting on the magnet is:

A

10k^\hat{k} Nm

B

20k^\hat{k} Nm

C

30k^\hat{k} Nm

D

40k^\hat{k} Nm

Answer

30k^30\hat{k} Nm

Explanation

Solution

The torque τ\overrightarrow{\tau} acting on a magnetic dipole with magnetic moment M\overrightarrow{M} placed in a magnetic field B\overrightarrow{B} is given by the cross product: τ=M×B\overrightarrow{\tau} = \overrightarrow{M} \times \overrightarrow{B} Given the magnetic moment M=(10i^)\overrightarrow{M} = (10\hat{i}) Am² and the magnetic field B=(2i^+3j^)\overrightarrow{B} = (2\hat{i} + 3\hat{j}) T. We calculate the torque as follows: τ=(10i^)×(2i^+3j^)\overrightarrow{\tau} = (10\hat{i}) \times (2\hat{i} + 3\hat{j}) Using the distributive property of the cross product: τ=(10i^×2i^)+(10i^×3j^)\overrightarrow{\tau} = (10\hat{i} \times 2\hat{i}) + (10\hat{i} \times 3\hat{j}) Recall the properties of the cross product for unit vectors: i^×i^=0\hat{i} \times \hat{i} = 0 and i^×j^=k^\hat{i} \times \hat{j} = \hat{k}. τ=(10×2)(i^×i^)+(10×3)(i^×j^)\overrightarrow{\tau} = (10 \times 2)(\hat{i} \times \hat{i}) + (10 \times 3)(\hat{i} \times \hat{j}) τ=20(0)+30(k^)\overrightarrow{\tau} = 20(0) + 30(\hat{k}) τ=0+30k^\overrightarrow{\tau} = 0 + 30\hat{k} τ=30k^ Nm\overrightarrow{\tau} = 30\hat{k} \text{ Nm}