Solveeit Logo

Question

Question: 6-4sin4x-6cos8x=9sec^2theta+cosec^2 theta;t x1 be smallest +ve sol and x2 be...

6-4sin4x-6cos8x=9sec^2theta+cosec^2 theta;t x1 be smallest +ve sol and x2 be

Answer

x_1=\dfrac{3\pi}{8} and x_2=\dfrac{7\pi}{8} with \theta=\dfrac{\pi}{6}

Explanation

Solution

We start with the equation

64sin4x6cos8x=9sec2θ+csc2θ.6-4\sin4x-6\cos8x=9\sec^2\theta+\csc^2 \theta.

Step 1. Simplify the Left‐Hand Side (in xx)

Write cos8x\cos8x in terms of sin4x\sin4x by using the double‐angle formula:

cos8x=12sin24x.\cos8x=1-2\sin^2 4x.

Then

64sin4x6cos8x=64sin4x6(12sin24x)=64sin4x6+12sin24x=12sin24x4sin4x=4sin4x(3sin4x1).\begin{aligned} 6-4\sin4x-6\cos8x &=6-4\sin4x-6(1-2\sin^2 4x)\\[1mm] &=6-4\sin4x-6+12\sin^2 4x\\[1mm] &=12\sin^2 4x-4\sin4x\\[1mm] &=4\sin4x\,(3\sin4x-1). \end{aligned}

Step 2. Understand the Right‐Hand Side (in θ\theta)

We need to note that

sec2θ=1cos2θ,csc2θ=1sin2θ.\sec^2\theta=\frac{1}{\cos^2\theta},\quad \csc^2\theta=\frac{1}{\sin^2\theta}.

Thus

9sec2θ+csc2θ=9cos2θ+1sin2θ.9\sec^2\theta+\csc^2\theta=\frac{9}{\cos^2\theta}+\frac{1}{\sin^2\theta}.

One may show (by the substitution t=tanθt=\tan\theta) that this expression is minimized with respect to θ\theta when

tan2θ=13.\tan^2\theta=\frac{1}{3}.

Indeed, writing

9cos2θ+1sin2θ=(1+t2)(9+1t2)=9t2+1t2+10,\frac{9}{\cos^2\theta}+\frac{1}{\sin^2\theta}=(1+t^2)\Bigl(9+\frac{1}{t^2}\Bigr)=9t^2+\frac{1}{t^2}+10,

minimization gives t2=13t^2=\frac{1}{3} and the minimum value is

9(13)+3+10=3+3+10=16.9\left(\frac{1}{3}\right)+3+10=3+3+10=16.

Thus

9sec2θ+csc2θ16,9\sec^2\theta+\csc^2\theta\ge 16,

with equality when tan2θ=13\tan^2\theta=\frac{1}{3} (i.e. θ=π6\theta=\frac{\pi}{6} in the first quadrant).

Step 3. Equate the Two Sides at the Minimum

For the equality to hold the left‐hand side must also equal 16:

4sin4x(3sin4x1)=16.4\sin4x\,(3\sin4x-1)=16.

Dividing both sides by 4,

sin4x(3sin4x1)=4.\sin4x\,(3\sin4x-1)=4.

Let s=sin4xs=\sin4x. Then

3s2s4=0.3s^2 - s -4=0.

The quadratic has discriminant

Δ=1+48=49,\Delta=1+48=49,

so

s=1±76.s=\frac{1\pm 7}{6}.

This gives:

s=86=43ors=66=1.s=\frac{8}{6}=\frac{4}{3}\quad \text{or}\quad s=\frac{-6}{6}=-1.

Since sin4x\sin4x must lie in [1,1][-1,1], we reject s=43s=\frac{4}{3}. Thus we have

sin4x=1.\sin4x=-1.

Step 4. Solve sin4x=1\sin4x=-1

We know

sinα=1α=3π2+2πk,kZ.\sin\alpha=-1 \quad\Longrightarrow\quad \alpha=\frac{3\pi}{2}+2\pi k,\quad k\in\mathbb{Z}.

Since α=4x\alpha=4x, it follows that

4x=3π2+2πk,4x=\frac{3\pi}{2}+2\pi k,

or

x=3π8+πk2,kZ.x=\frac{3\pi}{8}+\frac{\pi k}{2},\quad k\in\mathbb{Z}.

Thus the smallest positive solution is (with k=0k=0)

x1=3π8,x_1=\frac{3\pi}{8},

and the next positive solution (with k=1k=1) is

x2=3π8+π2=3π+4π8=7π8.x_2=\frac{3\pi}{8}+\frac{\pi}{2}=\frac{3\pi+4\pi}{8}=\frac{7\pi}{8}.

Also, from before, equality on the right‐hand side is reached when

tanθ=13,soθ=π6.\tan\theta=\frac{1}{\sqrt{3}},\quad\text{so}\quad \theta=\frac{\pi}{6}.

Minimal Core Explanation

  1. Simplify LHS:
    cos8x=12sin24x\cos8x=1-2\sin^2 4x gives 64sin4x6(12sin24x)=4sin4x(3sin4x1).6-4\sin4x-6(1-2\sin^2 4x)=4\sin4x(3\sin4x-1).
  2. Minimize RHS:
    Show that 9sec2θ+csc2θ16,9\sec^2\theta+\csc^2\theta\ge16, with equality when tan2θ=13\tan^2\theta=\frac{1}{3} (i.e. θ=π6\theta=\frac{\pi}{6}).
  3. Setting equality:
    4sin4x(3sin4x1)=164\sin4x(3\sin4x-1)=16 leads to sin4x(3sin4x1)=4.\sin4x(3\sin4x-1)=4. Let s=sin4xs=\sin4x. Solving 3s2s4=03s^2-s-4=0 gives s=1s=-1 (since s=43s=\frac{4}{3} is not possible).
  4. Solve for xx:
    sin4x=1\sin4x=-1 yields x=3π8+πk2.x=\frac{3\pi}{8}+\frac{\pi k}{2}. Thus x1=3π8x_1=\frac{3\pi}{8} (smallest positive) and x2=7π8x_2=\frac{7\pi}{8} (next solution).