Question
Question: 6-4sin4x-6cos8x=9sec^2theta+cosec^2 theta;t x1 be smallest +ve sol and x2 be...
6-4sin4x-6cos8x=9sec^2theta+cosec^2 theta;t x1 be smallest +ve sol and x2 be
x_1=\dfrac{3\pi}{8} and x_2=\dfrac{7\pi}{8} with \theta=\dfrac{\pi}{6}
Solution
We start with the equation
6−4sin4x−6cos8x=9sec2θ+csc2θ.Step 1. Simplify the Left‐Hand Side (in x)
Write cos8x in terms of sin4x by using the double‐angle formula:
cos8x=1−2sin24x.Then
6−4sin4x−6cos8x=6−4sin4x−6(1−2sin24x)=6−4sin4x−6+12sin24x=12sin24x−4sin4x=4sin4x(3sin4x−1).Step 2. Understand the Right‐Hand Side (in θ)
We need to note that
sec2θ=cos2θ1,csc2θ=sin2θ1.Thus
9sec2θ+csc2θ=cos2θ9+sin2θ1.One may show (by the substitution t=tanθ) that this expression is minimized with respect to θ when
tan2θ=31.Indeed, writing
cos2θ9+sin2θ1=(1+t2)(9+t21)=9t2+t21+10,minimization gives t2=31 and the minimum value is
9(31)+3+10=3+3+10=16.Thus
9sec2θ+csc2θ≥16,with equality when tan2θ=31 (i.e. θ=6π in the first quadrant).
Step 3. Equate the Two Sides at the Minimum
For the equality to hold the left‐hand side must also equal 16:
4sin4x(3sin4x−1)=16.Dividing both sides by 4,
sin4x(3sin4x−1)=4.Let s=sin4x. Then
3s2−s−4=0.The quadratic has discriminant
Δ=1+48=49,so
s=61±7.This gives:
s=68=34ors=6−6=−1.Since sin4x must lie in [−1,1], we reject s=34. Thus we have
sin4x=−1.Step 4. Solve sin4x=−1
We know
sinα=−1⟹α=23π+2πk,k∈Z.Since α=4x, it follows that
4x=23π+2πk,or
x=83π+2πk,k∈Z.Thus the smallest positive solution is (with k=0)
x1=83π,and the next positive solution (with k=1) is
x2=83π+2π=83π+4π=87π.Also, from before, equality on the right‐hand side is reached when
tanθ=31,soθ=6π.Minimal Core Explanation
- Simplify LHS:
cos8x=1−2sin24x gives 6−4sin4x−6(1−2sin24x)=4sin4x(3sin4x−1). - Minimize RHS:
Show that 9sec2θ+csc2θ≥16, with equality when tan2θ=31 (i.e. θ=6π). - Setting equality:
4sin4x(3sin4x−1)=16 leads to sin4x(3sin4x−1)=4. Let s=sin4x. Solving 3s2−s−4=0 gives s=−1 (since s=34 is not possible). - Solve for x:
sin4x=−1 yields x=83π+2πk. Thus x1=83π (smallest positive) and x2=87π (next solution).