Solveeit Logo

Question

Question: ${}^{10}C_0 {}^{20}C_{10} - {}^{10}C_1 {}^{18}C_{10} + {}^{10}C_2 {}^{16}C_{10} - {}^{10}C_3 {}^{14}...

10C020C1010C118C10+10C216C1010C314C10+10C412C1010C510C10{}^{10}C_0 {}^{20}C_{10} - {}^{10}C_1 {}^{18}C_{10} + {}^{10}C_2 {}^{16}C_{10} - {}^{10}C_3 {}^{14}C_{10} + {}^{10}C_4 {}^{12}C_{10} - {}^{10}C_5 {}^{10}C_{10} is equal to

Answer

1024

Explanation

Solution

The given expression is: S=10C020C1010C118C10+10C216C1010C314C10+10C412C1010C510C10S = {}^{10}C_0 {}^{20}C_{10} - {}^{10}C_1 {}^{18}C_{10} + {}^{10}C_2 {}^{16}C_{10} - {}^{10}C_3 {}^{14}C_{10} + {}^{10}C_4 {}^{12}C_{10} - {}^{10}C_5 {}^{10}C_{10}

We can write this sum in a more compact form using summation notation. The general term is (1)k10Ck202kC10(-1)^k {}^{10}C_k {}^{20-2k}C_{10}. So, S=k=05(1)k10Ck202kC10S = \sum_{k=0}^{5} (-1)^k {}^{10}C_k {}^{20-2k}C_{10}.

Observe the term 202kC10{}^{20-2k}C_{10}. If 202k<1020-2k < 10, then this binomial coefficient is zero. This happens when 10<2k10 < 2k, or k>5k > 5. For example: If k=6k=6, the term is 2012C10=8C10=0{}^{20-12}C_{10} = {}^{8}C_{10} = 0. If k=7k=7, the term is 2014C10=6C10=0{}^{20-14}C_{10} = {}^{6}C_{10} = 0. ... If k=10k=10, the term is 2020C10=0C10=0{}^{20-20}C_{10} = {}^{0}C_{10} = 0.

Since all terms from k=6k=6 to k=10k=10 are zero, we can extend the upper limit of the summation from 5 to 10 without changing the value of the sum: S=k=010(1)k10Ck202kC10S = \sum_{k=0}^{10} (-1)^k {}^{10}C_k {}^{20-2k}C_{10}.

Now, we use the property that nCr{}^{n}C_r is the coefficient of xrx^r in the expansion of (1+x)n(1+x)^n. So, 202kC10{}^{20-2k}C_{10} is the coefficient of x10x^{10} in (1+x)202k(1+x)^{20-2k}. Therefore, we can write SS as: S=k=010(1)k10Ck[Coeff of x10 in (1+x)202k]S = \sum_{k=0}^{10} (-1)^k {}^{10}C_k \left[ \text{Coeff of } x^{10} \text{ in } (1+x)^{20-2k} \right] Since the coefficient extraction is a linear operation, we can move it outside the summation: S=Coeff of x10 in [k=010(1)k10Ck(1+x)202k]S = \text{Coeff of } x^{10} \text{ in } \left[ \sum_{k=0}^{10} (-1)^k {}^{10}C_k (1+x)^{20-2k} \right]

Factor out (1+x)20(1+x)^{20} from each term inside the summation: S=Coeff of x10 in [(1+x)20k=010(1)k10Ck(1+x)2k]S = \text{Coeff of } x^{10} \text{ in } \left[ (1+x)^{20} \sum_{k=0}^{10} (-1)^k {}^{10}C_k (1+x)^{-2k} \right] The summation part k=010(1)k10Ck(1+x)2k\sum_{k=0}^{10} (-1)^k {}^{10}C_k (1+x)^{-2k} is a binomial expansion of the form k=0nnCk(y)k=(1y)n\sum_{k=0}^{n} {}^{n}C_k (-y)^k = (1-y)^n. Here, n=10n=10 and y=(1+x)2y=(1+x)^{-2}. So, k=010(1)k10Ck(1+x)2k=(1(1+x)2)10\sum_{k=0}^{10} (-1)^k {}^{10}C_k (1+x)^{-2k} = \left(1 - (1+x)^{-2}\right)^{10}.

Substitute this back into the expression for SS: S=Coeff of x10 in [(1+x)20(11(1+x)2)10]S = \text{Coeff of } x^{10} \text{ in } \left[ (1+x)^{20} \left(1 - \frac{1}{(1+x)^2}\right)^{10} \right] Simplify the term inside the parenthesis: 11(1+x)2=(1+x)21(1+x)2=(1+2x+x2)1(1+x)2=2x+x2(1+x)21 - \frac{1}{(1+x)^2} = \frac{(1+x)^2 - 1}{(1+x)^2} = \frac{(1+2x+x^2) - 1}{(1+x)^2} = \frac{2x+x^2}{(1+x)^2}

Now substitute this back: S=Coeff of x10 in [(1+x)20(2x+x2(1+x)2)10]S = \text{Coeff of } x^{10} \text{ in } \left[ (1+x)^{20} \left(\frac{2x+x^2}{(1+x)^2}\right)^{10} \right] S=Coeff of x10 in [(1+x)20(2x+x2)10((1+x)2)10]S = \text{Coeff of } x^{10} \text{ in } \left[ (1+x)^{20} \frac{(2x+x^2)^{10}}{((1+x)^2)^{10}} \right] S=Coeff of x10 in [(1+x)20(2x+x2)10(1+x)20]S = \text{Coeff of } x^{10} \text{ in } \left[ (1+x)^{20} \frac{(2x+x^2)^{10}}{(1+x)^{20}} \right] The (1+x)20(1+x)^{20} terms cancel out: S=Coeff of x10 in (2x+x2)10S = \text{Coeff of } x^{10} \text{ in } (2x+x^2)^{10}

Factor out xx from (2x+x2)(2x+x^2): 2x+x2=x(2+x)2x+x^2 = x(2+x) So, (2x+x2)10=(x(2+x))10=x10(2+x)10(2x+x^2)^{10} = (x(2+x))^{10} = x^{10}(2+x)^{10}.

Therefore, S=Coeff of x10 in x10(2+x)10S = \text{Coeff of } x^{10} \text{ in } x^{10}(2+x)^{10}. To find the coefficient of x10x^{10} in x10(2+x)10x^{10}(2+x)^{10}, we need to find the constant term (coefficient of x0x^0) in (2+x)10(2+x)^{10}. The expansion of (2+x)10(2+x)^{10} is given by the binomial theorem: (2+x)10=r=01010Cr210rxr(2+x)^{10} = \sum_{r=0}^{10} {}^{10}C_r 2^{10-r} x^r. The constant term (when r=0r=0) is 10C02100x0=12101=210{}^{10}C_0 2^{10-0} x^0 = 1 \cdot 2^{10} \cdot 1 = 2^{10}.

So, S=210S = 2^{10}. 210=10242^{10} = 1024.