Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\...

Let A=[1a001aa01],X=[xyz],B=[000]A = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} and AX=BAX = B, then the system of equations has infinite number of solutions, then

A

-1

B

0

C

1

D

2

Answer

a = -1

Explanation

Solution

For the system AX=BAX = B to have infinitely many solutions, the matrix AA must be singular. This means:

det(A)=0\det(A) = 0

Given:

A=[1a001aa01]A = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1 \end{bmatrix}

Compute the determinant:

det(A)=11a01a0aa1+001a0\det(A) = 1\begin{vmatrix} 1 & a \\ 0 & 1 \end{vmatrix} - a \begin{vmatrix} 0 & a \\ a & 1 \end{vmatrix} + 0\begin{vmatrix} 0 & 1 \\ a & 0 \end{vmatrix} =1(11a0)a(01aa)= 1(1 \cdot 1 - a \cdot 0) - a (0 \cdot 1 - a \cdot a) =1a(a2)= 1 - a(-a^2) =1+a3= 1 + a^3

Setting det(A)=0\det(A) = 0:

1+a3=0a3=1a=1.1 + a^3 = 0 \quad \Longrightarrow \quad a^3 = -1 \quad \Longrightarrow \quad a = -1.

Thus, the system has infinitely many solutions when a=1a = -1.

The homogeneous system AX=BAX = B has infinite solutions if the determinant of AA is zero. Calculating det(A)\det(A) gives 1+a31 + a^3, which is zero when a=1a = -1.