Solveeit Logo

Question

Question: $\int sin(e^x)e^x dx =$...

sin(ex)exdx=\int sin(e^x)e^x dx =

A

cos(ex)+Ccos(e^x)+C

B

cos(ex)+C-cos(e^x)+C

C

sin(ex)+Csin(e^x)+C

D

None of these

Answer

cos(ex)+C-cos(e^x)+C

Explanation

Solution

To solve the integral sin(ex)exdx\int \sin(e^x)e^x dx, we use the method of substitution.

Let u=exu = e^x.
Then, differentiate uu with respect to xx:
dudx=ddx(ex)=ex\frac{du}{dx} = \frac{d}{dx}(e^x) = e^x.
This implies du=exdxdu = e^x dx.

Now, substitute uu and dudu into the integral:
sin(ex)exdx=sin(u)du\int \sin(e^x)e^x dx = \int \sin(u) du

The integral of sin(u)\sin(u) with respect to uu is cos(u)-\cos(u).
So, sin(u)du=cos(u)+C\int \sin(u) du = -\cos(u) + C, where CC is the constant of integration.

Finally, substitute back u=exu = e^x:
cos(ex)+C-\cos(e^x) + C.