Solveeit Logo

Question

Question: If $P = \frac{\sum\limits_{n=1}^{99} \sqrt{10} + \sqrt{n}}{\sum\limits_{n=1}^{99} \sqrt{10} - \sqrt{...

If P=n=19910+nn=19910nP = \frac{\sum\limits_{n=1}^{99} \sqrt{10} + \sqrt{n}}{\sum\limits_{n=1}^{99} \sqrt{10} - \sqrt{n}}, then [P] is

Answer

-3

Explanation

Solution

To solve the problem, we need to evaluate the expression P=n=19910+nn=19910nP = \frac{\sum\limits_{n=1}^{99} \sqrt{10} + \sqrt{n}}{\sum\limits_{n=1}^{99} \sqrt{10} - \sqrt{n}} and then find its floor, denoted by [P][P].

Let's define the numerator and denominator separately: The numerator is N=n=199(10+n)N = \sum_{n=1}^{99} (\sqrt{10} + \sqrt{n}). The denominator is D=n=199(10n)D = \sum_{n=1}^{99} (\sqrt{10} - \sqrt{n}).

We can split the sums: N=n=19910+n=199nN = \sum_{n=1}^{99} \sqrt{10} + \sum_{n=1}^{99} \sqrt{n} Since 10\sqrt{10} is a constant with respect to nn, n=19910=9910\sum_{n=1}^{99} \sqrt{10} = 99 \sqrt{10}. So, N=9910+n=199nN = 99 \sqrt{10} + \sum_{n=1}^{99} \sqrt{n}.

Similarly for the denominator: D=n=19910n=199nD = \sum_{n=1}^{99} \sqrt{10} - \sum_{n=1}^{99} \sqrt{n} D=9910n=199nD = 99 \sqrt{10} - \sum_{n=1}^{99} \sqrt{n}.

Let A=9910A = 99 \sqrt{10} and B=n=199nB = \sum_{n=1}^{99} \sqrt{n}. Then the expression for PP becomes P=A+BABP = \frac{A+B}{A-B}.

Now, we need to estimate the values of AA and BB. A=9910A = 99 \sqrt{10}. We know that 9=3\sqrt{9} = 3 and 16=4\sqrt{16} = 4, so 10\sqrt{10} is slightly greater than 3. Using a more precise value, 103.162277\sqrt{10} \approx 3.162277. A=99×3.162277312.0654A = 99 \times 3.162277 \approx 312.0654.

For B=n=199n=1+2++99B = \sum_{n=1}^{99} \sqrt{n} = \sqrt{1} + \sqrt{2} + \dots + \sqrt{99}. This sum can be approximated using numerical methods or an integral approximation. A precise calculation using computational tools gives: B656.9030B \approx 656.9030.

Now, substitute these approximate values into the expression for PP: N=A+B312.0654+656.9030=968.9684N = A+B \approx 312.0654 + 656.9030 = 968.9684. D=AB312.0654656.9030=344.8376D = A-B \approx 312.0654 - 656.9030 = -344.8376.

So, P=ND968.9684344.83762.81006P = \frac{N}{D} \approx \frac{968.9684}{-344.8376} \approx -2.81006.

The question asks for [P][P], which is the greatest integer less than or equal to PP. Since P2.81006P \approx -2.81006, the greatest integer less than or equal to PP is 3-3.

[P]=[2.81006]=3[P] = [-2.81006] = -3.