Solveeit Logo

Question

Question: For any real number b, let f(b) denotes the maximum of |$\sin x + \frac{2}{3 + \sin x} + b$| $\foral...

For any real number b, let f(b) denotes the maximum of |sinx+23+sinx+b\sin x + \frac{2}{3 + \sin x} + b| xR\forall x \in R. Then the minimum value of f(b) bR\forall b \in R is:

A

12\frac{1}{2}

B

34\frac{3}{4}

C

14\frac{1}{4}

D

1

Answer

34\frac{3}{4}

Explanation

Solution

Let y=3+sinxy = 3 + \sin x. Since 1sinx1-1 \le \sin x \le 1, the range of yy is [2,4][2, 4]. Let g(y)=y+2yg(y) = y + \frac{2}{y}. The derivative g(y)=12y2>0g'(y) = 1 - \frac{2}{y^2} > 0 for y[2,4]y \in [2, 4], so g(y)g(y) is increasing. The range of g(y)g(y) on [2,4][2, 4] is [g(2),g(4)]=[2+22,4+24]=[3,92][g(2), g(4)] = [2 + \frac{2}{2}, 4 + \frac{2}{4}] = [3, \frac{9}{2}]. The expression is g(y)3+b|\, g(y) - 3 + b \,|. Let k=g(y)3k = g(y) - 3. The range of kk is [33,923]=[0,32][3-3, \frac{9}{2}-3] = [0, \frac{3}{2}]. We want to find the minimum of f(b)=maxk[0,3/2]k+bf(b) = \max_{k \in [0, 3/2]} |k+b|. This is equivalent to finding the minimum of maxA[b,b+3/2]A\max_{A \in [b, b+3/2]} |A|. This maximum is minimized when the interval [b,b+3/2][b, b+3/2] is centered at 0. The midpoint is b+34b + \frac{3}{4}. Setting b+34=0b + \frac{3}{4} = 0, we get b=34b = -\frac{3}{4}. The interval becomes [34,34][-\frac{3}{4}, \frac{3}{4}], and the maximum value of A|A| is 34\frac{3}{4}.