Solveeit Logo

Question

Question: 37.8 g N₂O₅ was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 ...

37.8 g N₂O₅ was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K 2N2O5(g)2N2O4(g)+O2(g)2N_2O_{5(g)} \rightarrow 2N_2O_{4(g)} + O_{2(g)} The total pressure at equilibrium was found to be 18.65 bar. Then, KpK_p = ______ × 10210^{-2} [nearest integer] Assume N₂O₅ to behave ideally under these conditions Given : R = 0.082 bar L mol⁻¹ K⁻¹.

Answer

962

Explanation

Solution

  1. Molar mass and initial moles of N2O5N_2O_5: Molar mass of N2O5=2×14.01+5×16.00=108.02 g/molN_2O_5 = 2 \times 14.01 + 5 \times 16.00 = 108.02 \text{ g/mol}. Initial moles of N2O5N_2O_5, n=37.8 g108.02 g/mol0.350 moln = \frac{37.8 \text{ g}}{108.02 \text{ g/mol}} \approx 0.350 \text{ mol}.

  2. Initial pressure of N2O5N_2O_5: Using the ideal gas law, P0=nRTVP_0 = \frac{nRT}{V}: P0=0.350 mol×0.082 bar L mol⁻¹ K⁻¹×500 K1 L=14.35 barP_0 = \frac{0.350 \text{ mol} \times 0.082 \text{ bar L mol⁻¹ K⁻¹} \times 500 \text{ K}}{1 \text{ L}} = 14.35 \text{ bar}.

  3. ICE table (in terms of partial pressures): Reaction: 2N2O5(g)2N2O4(g)+O2(g)2N_2O_{5(g)} \rightarrow 2N_2O_{4(g)} + O_{2(g)}

    SpeciesInitial Pressure (bar)Change (bar)Equilibrium Pressure (bar)
    N2O5N_2O_514.3514.352x-2x14.352x14.35 - 2x
    N2O4N_2O_400+2x+2x2x2x
    O2O_200+x+xxx
  4. Total pressure at equilibrium: Ptotal=(14.352x)+2x+x=14.35+xP_{total} = (14.35 - 2x) + 2x + x = 14.35 + x. Given Ptotal=18.65 barP_{total} = 18.65 \text{ bar}. 18.65=14.35+x    x=4.30 bar18.65 = 14.35 + x \implies x = 4.30 \text{ bar}.

  5. Equilibrium partial pressures: PN2O5=14.352(4.30)=5.75 barP_{N_2O_5} = 14.35 - 2(4.30) = 5.75 \text{ bar}. PN2O4=2(4.30)=8.60 barP_{N_2O_4} = 2(4.30) = 8.60 \text{ bar}. PO2=4.30 barP_{O_2} = 4.30 \text{ bar}.

  6. Calculate KpK_p: Kp=(PN2O4)2PO2(PN2O5)2=(8.60)2×4.30(5.75)29.619 barK_p = \frac{(P_{N_2O_4})^2 \cdot P_{O_2}}{(P_{N_2O_5})^2} = \frac{(8.60)^2 \times 4.30}{(5.75)^2} \approx 9.619 \text{ bar}.

  7. Format the answer: Kp=9.619 bar=961.9×102 barK_p = 9.619 \text{ bar} = 961.9 \times 10^{-2} \text{ bar}. Rounding to the nearest integer, the value is 962.