Solveeit Logo

Question

Question: The value of $\int_{0}^{\pi/2}\frac{dx}{(4cos^2x+9sin^2x)^2}$ is equal to...

The value of 0π/2dx(4cos2x+9sin2x)2\int_{0}^{\pi/2}\frac{dx}{(4cos^2x+9sin^2x)^2} is equal to

A

(1) 11π864\frac{11\pi}{864}

B

(2) 13π864\frac{13\pi}{864}

C

(3) 17π864\frac{17\pi}{864}

D

(4) 26π864\frac{26\pi}{864}

Answer

(2) 13π864\frac{13\pi}{864}

Explanation

Solution

We can use the formula 0π/2dx(a2cos2x+b2sin2x)2=π(a2+b2)4a3b3\int_{0}^{\pi/2}\frac{dx}{(a^2\cos^2x+b^2\sin^2x)^2} = \frac{\pi(a^2+b^2)}{4a^3b^3}. Here, a2=4a^2=4 and b2=9b^2=9, so a=2a=2 and b=3b=3. Substituting these values into the formula: π(4+9)4(23)(33)=π(13)4(8)(27)=13π4(216)=13π864\frac{\pi(4+9)}{4(2^3)(3^3)} = \frac{\pi(13)}{4(8)(27)} = \frac{13\pi}{4(216)} = \frac{13\pi}{864}