Solveeit Logo

Question

Question: Let for a differentiable function f: (0, ∞) → R, $$f(x)-f(y) \ge log_e(\frac{x}{y})+x-y, \forall x,...

Let for a differentiable function f: (0, ∞) → R,

f(x)f(y)loge(xy)+xy,x,y(0,).f(x)-f(y) \ge log_e(\frac{x}{y})+x-y, \forall x, y \in (0, \infty).

Then

n=120f(1n2) \sum_{n=1}^{20} f'(\frac{1}{n^2}) is equal to ____.

Answer

2890

Explanation

Solution

Given the inequality f(x)f(y)loge(xy)+xy,x,y(0,)f(x)-f(y) \ge \log_e(\frac{x}{y})+x-y, \forall x, y \in (0, \infty). Rearrange the inequality: f(x)f(y)(xy)(logexlogey)0f(x)-f(y) - (x-y) - (\log_e x - \log_e y) \ge 0 Consider a new function g(x)=f(x)xlogexg(x) = f(x) - x - \log_e x. The inequality can be rewritten as g(x)g(y)0g(x) - g(y) \ge 0.

Case 1: Let x>yx > y. Then g(x)g(y)g(x) \ge g(y), which implies g(x)g(y)xy0\frac{g(x)-g(y)}{x-y} \ge 0. Taking the limit as xy+x \to y^+: g(y)0g'(y) \ge 0.

Case 2: Let x<yx < y. Then g(x)g(y)g(x) \le g(y), which implies g(x)g(y)xy0\frac{g(x)-g(y)}{x-y} \le 0 (since xy<0x-y < 0, the inequality sign flips). Taking the limit as xyx \to y^-: g(y)0g'(y) \le 0.

Since ff is differentiable, gg is also differentiable. For g(y)g'(y) to exist, it must satisfy both g(y)0g'(y) \ge 0 and g(y)0g'(y) \le 0. This implies g(y)=0g'(y) = 0.

Now, let's find g(x)g'(x): g(x)=ddx(f(x)xlogex)=f(x)11xg'(x) = \frac{d}{dx}(f(x) - x - \log_e x) = f'(x) - 1 - \frac{1}{x}. Setting g(x)=0g'(x) = 0: f(x)11x=0f'(x) - 1 - \frac{1}{x} = 0 f(x)=1+1xf'(x) = 1 + \frac{1}{x}.

We need to calculate n=120f(1n2)\sum_{n=1}^{20} f'(\frac{1}{n^2}). Substitute x=1n2x = \frac{1}{n^2} into f(x)f'(x): f(1n2)=1+11n2=1+n2f'(\frac{1}{n^2}) = 1 + \frac{1}{\frac{1}{n^2}} = 1 + n^2.

Now, calculate the sum:

n=120f(1n2)=n=120(1+n2)=n=1201+n=120n2=20×1+20(20+1)(2×20+1)6=20+20×21×416=20+10×7×41=20+2870=2890\sum_{n=1}^{20} f'(\frac{1}{n^2}) = \sum_{n=1}^{20} (1 + n^2) = \sum_{n=1}^{20} 1 + \sum_{n=1}^{20} n^2 = 20 \times 1 + \frac{20(20+1)(2 \times 20+1)}{6} = 20 + \frac{20 \times 21 \times 41}{6} = 20 + 10 \times 7 \times 41 = 20 + 2870 = 2890